

CONSULTANTS IN ENGINEERING, ENVIRONMENTAL SCIENCE & PLANNING

APPENDIX 8.1

NOISE & VIBRATION

Appendix 8.1a – Baseline Noise Measurements and Data Analysis

Appendix 8.1b – Equipment Calibration Certificates

Appendix 8.1c – Noise Sensitive Location Details

Appendix 8.1d – Valley Correction

Appendix 8.1e – Sound Power Level Data For Wind Turbines

Appendix 8.1f – Predicted Noise Levels From Wind farm

At Nearby Noise Sensitive Locations

APPENDIX 8.1a

BASELINE NOISE MEASUREMENTS AND DATA ANALYIS

Baseline Noise Measurements

Baseline noise monitoring was undertaken at four receptor locations, to establish the existing background noise levels at these locations. These locations represent the nearest residential locations to the north, south east and west of the proposed wind farm.

Selection of Monitoring Locations

Section 2.2.5 of the Institute of Acoustics', A Good Practice Guide to the Application of ETUS-R-97 for the Assessment at Rating of Wind Turbine Noise (2013) regarding use of proxy locations states "When choosing a location that will serve as a proxy for others, the basis for selection is that it can reasonably be claimed, from inspection and observation, to be representative of the non-surveyed locations, in line with the criteria of Section 2.5. Measurement locations outside a property's curtilage (such as an adjacent field) may be used when access to a representative property cannot be obtained, provided that such a location can be justified as being representative. No general guidance can therefore be given on the number of measurement locations as this will be site-specific." Section 2.5 of the GPG is summarised in Table 8.1.1 with the applicability of the proxy locations selected for Coumnagappul Wind Farm.

Table 8.1.1: IOA GPG Section 2.5 Criteria and Applicability to Coumnagappul Wind Farm Monitoring Locations

Requirements of Section 2.5	Coumnagappul Wind Farm Monitoring Locations
2.5.1 Where possible, measurements should be made in the vicinity of a dwelling in an area frequently used for rest and recreation.	Location R51 was placed in a field next to the property. It was not possible to place the noise meter in the garden of the property due to dogs with electric fence at the property. The noise meter was located approximately 12m from the façade of the house.
	Location R71: Noise monitor was placed in the field behind property with a view towards the proposed windfarm. This location was chosen as there was little space within the rear garden of the property and to avoid screening from the outbuilding to the rear of the property.
2.5.2 Equipment should be placed at outdoor positions where noise levels are representative of typical 'low' levels likely to be experienced in the vicinity of a dwelling (or group of dwellings if the measurements are intended to be applied to more than one dwelling). The overriding consideration is that it can reasonably be claimed, from inspection and observation, that there are no other suitable noise-sensitive locations, in the vicinity of any selected location and close to a dwelling, where background noise levels would be expected to be consistently lower than the levels at the selected position.	This was adhered to for all measurement locations.

Requirements of Section 2.5	Coumnagappul Wind Farm Monitoring Locations
2.5.3 Ideally the position should be one which would be exposed to noise from the wind turbines whilst being best-screened from other noise sources such as nearby roads or vegetation.	The locations were in open areas or within the curtilage of a dwelling, set back from local roads and vegetation/ forestry where possible. Locations were chosen to have a direct line of sight to the proposed wind farm development.
2.5.4 The background surveys provide the basis for setting both daytime and night-time noise limits: the measurement position must therefore reasonably represent external areas (for daytime noise) and also building façades containing windows (for night-time noise).	The locations being used to derive limits are representative of external areas and façade locations.
2.5.5 In most locations, background noise levels will be determined by wind in trees and vegetation and noise sources external to the property such as traffic noise. The presence of local noise sources such as boiler flues, garden fountains, domestic drains, watercourses and farm equipment should be identified.	There were some local noise sources described below. Prior to Round 1 of the measurements there was significantly heavy rainfall in the area. However, no additional water noise sources from drains or streams were noted at the monitoring locations. This was not an issue for Round 2 of the noise monitoring.
2.5.6 Where it is not possible to exclude the influence of variable local noise sources by selection of monitoring position, it is generally possible to identify such data from inspection of noise level time histories and therefore to exclude it from the data set used to derive noise limits	Attendance at the monitoring location during installation, battery changes and equipment collection did not identify any variable noise sources. Atypical data was removed from data analysis.
2.5.7 In all cases, microphones should be supported at a height of 1.2 – 1.5 metres above the ground and no closer than 3.5 metres to any significant reflecting surface (such as a building or fence), except the ground. The position should be within 20 metres of the dwelling unless there are particular reasons for measuring at a more distant position (such as the presence of vegetation or denial of access); if so, the reasons should be explained.	The microphones were mounted on tripods at approximate height of 1.5 m and at least 3.5 m from any significant reflecting surface other than the ground. Where possible the noise monitors were located within 20 m.
2.5.8 A resident at a selected property may request that measurements are made at a position which is considered inappropriate; perhaps because the preferred location(s) are inconvenient (it might obstruct lawn mowing, for example). In this situation the consultant should explain clearly the reasons why the measurements could be compromised; if no agreement can be reached, an alternative property or location should be sought. The assistance of the EHO may help to resolve these situations.	At location R51 the noise meter was placed in a field next to the property to avoid potential damage to equipment caused by dogs at the property.

Monitoring Locations

Noise monitoring was conducted at four locations, selected for obtaining a detailed representation of the background noise levels at receptors surrounding the development. Details of the four noise monitoring locations are provided in Table 8.1.2. The position of the monitoring locations is shown in Figure 8.2, Volume IV of the EIAR.

Table 8.1.2: Details on the Noise Monitoring Locations

Location ID	Easting	Northing	Description	Photograph
R6 (N1)	623019	611473	Noise meter in front garden, approximately 10m from front façade of property	Plate 8.1-1
R25 (N2)	623943	607284	Noise meter in north west corner of property approximately 9m from the property.	Plate 8.1-2
R51 (N3)	622155	608843	Noise meter in field south of property, approximately 12m from the property	Plate 8.1-3
R71 (N4)	626025	612230	Noise meter in a field just south of the property to the rear of the property, approximately 13m from the property.	Plate 8.1-4

Location N1

This location was to the west of the property, in the front garden. The microphone was in the front garden approximately 10m from the front façade of the dwelling. Generally, the area was very quiet with very occasional noise from road traffic. This location is north west of the proposed windfarm.

At this location there is a small stream west of the property and road, beyond a band of trees, over 100m from the measurement location. Noise from the stream was not observed during meter installation or collection.

Plate A8.1-1: Monitoring Location R6

Location N2

This location was at a property located within a cul-de-sac off the L1041. The noise meter was located in the north west corner of the property, a short distance from a dog kennel at the property. The meter was approximately 9m from the rear façade of the property. The area was very quiet, as it was a cul de sac and approximately 2.5km from the L1041 with passing traffic. This location is south of the proposed windfarm.

The main noise sources were from farming activities and livestock (sheep, cows). Also, noise from wind in the tall tree by the roadside, was observed, and noise from dogs barking. This location is south of the proposed windfarm. This is also the location for the rain gauge.

Plate A8.1-2: Monitoring Location R25

Location N3

This location is in a field south of the property. It was not possible to set up the meter in the front garden due to dogs with electric fence. The noise meter was approximately 12m from the front façade of the house, and a similar distance to the house from the adjacent road. This location is west of the proposed windfarm.

Plate A8.1-3: Monitoring Location N3

Location N4

This location is south of the property in the field behind the house, with a view towards the proposed windfarm. The noise meter was approximately 13m to the rear of the property. There is an outbuilding, with dogs to the rear of the property. This location is north east of the proposed windfarm.

Plate A8.1-4: Monitoring Location N4

Measurement Periods

The IOA GPG states "The duration of a background noise survey is determined only by the need to acquire sufficient valid data over the range of wind speeds. It is unlikely that this requirement can be met in less than 2 weeks." If insufficient wind data is collected after two weeks, the monitoring period will be extended subject to acquiring sufficient valid data over the range of wind speeds. Sufficient data was captured at all monitoring locations with a minimum of two and a half weeks' worth of data captured at all monitoring locations.

Definition of Time Periods

The following periods were analysed for this report:

Amenity/Quiet Daytime hours 18:00 – 23:00 Monday to Friday

13:00 – 18:00 Saturday 07:00 – 18:00 Sunday

Night-time hours 23:00 – 07:00

Monitoring Equipment

Baseline noise monitoring was carried out using Larson Davis Sound Expert Sound level meters (round 1) and Svantek Svan 977 Class 1 sound level meters (round 2). Details of the noise monitoring equipment are presented in Table 8.1.3. The sound level meters were fitted with ½" microphones. At location N2, N3 and N4 the microphone was surrounded by a secondary windshield. At location N1 the microphone was fitted with a single oversized wind shield. The setup used is in keeping with ESTU W/13/00386/REP, Noise Measurements in Windy Conditions and IOA Good Practice Guidelines, 2013. Calibration certificates for each sound level meter are provided in Appendix 8.1b.

Table 8.1.3: Details of Noise Monitoring Equipment

Monitoring Location	Meter Type	Serial Number
R6 (N1) (Round 2)	Svan 977	34173
R25 (N2) (Round 1) (Round 2)	Svan 977	34876
R51 (N3) (Round 1)	Larson Davis Sound Expert	LxT4642
R71 (N4) (Round 1)	Larson Davis Sound Expert	LxT6241

A CR800 Series data logger was used to record rainfall during the first round of measurements and a CR300 series was used for the second round of measurements. In both cases the rain gauge was located at location N2. This meteorological data was acquired every 10 minutes simultaneously with noise data.

Monitoring Protocol

Baseline noise measurements were undertaken at four locations near the proposed wind farm. Round 1 of the measurements took place between 25th of February 2021 and 15th March 2021. Round 2 of the measurements took place between the 21st April 2021 and the 11th May 2021.

The following monitoring protocol was carried out at each of the monitoring locations:

- 1. The sound level meters were calibrated on-site and set to log L_{A90} statistics on a fast time weighted response every ten minutes.
- 2. Each sound level meter microphone was mounted at 1.5 m above ground level and fitted with an enhanced windshield. Each microphone was placed at least 3.5 m from reflecting surfaces to obtain 'free field' conditions.
- 3. Wind speed and wind direction measurements were taken from permanent mast installed on site. Wind speed was measured at a range of heights and data from anemometers at 60 m and 80 m were used to extrapolate the wind speed data up to a hub height of 104 m.

The standardised 10 m wind speed was obtained from the turbine hub height wind speed by correcting it to 10 m height using a ground roughness factor of 0.05 m. Roughness length (or logarithmic) shear profile:

$$U_{1} = U_{2} \frac{\ln \left(\frac{H_{1}}{Z}\right)}{\ln \left(\frac{H_{2}}{Z}\right)}$$

where U_1 is the wind speed to be calculated, U_2 is the measured wind speed, H_1 is the height of the measured wind speed to be calculated (10m), H_2 is the height of the measured wind speed and z is the ground roughness length (m). A roughness length of 0.05m is used to standardise hub height wind speeds to 10m height in the IEC 61400-11:2012 standard.

- 4. The L_{A90} statistic measurements were synchronised with the 10 m standardised wind speeds derived from the on-site meteorological mast data.
- A logging rain gauge was also installed (at Monitoring Location R25) and similarly logged rainfall events over successive 10-minute intervals, also synchronised to the noise level and wind speed measurements.
- 6. After the monitoring was completed, the noise meters were re-tested using the calibration noise source to ensure that the meters had not drifted.

Analysis of the Baseline Data

Following collection of the site data, the following protocol was used to analyse the baseline data:

- 1. The raw baseline L_{A90} noise data was reviewed to determine whether there are any periods of non-consistent noise level due to equipment malfunction.
- 2. The raw noise level data was then correlated with the time synchronised wind speed and rainfall data. Preliminary data analysis was used to remove datasets (L_{A90}, wind speed and occurrence of rainfall event) which contain a rainfall event as these data sets are required to be removed from further analysis in line with best practice as outlined in the IOA Good Practice Guide and Supplementary Guidance Note 2 on Data Processing.
- 3. The prevailing background noise during for daytime periods uses the amenity/quiet daytime hours. The prevailing background noise during night-time periods excludes early morning periods to remove the dawn chorus which is not prevalent through that whole year., with data recorded between 04:00 and 07:00 was removed from further analysis.
- 4. Once the rainfall events have been accounted for, the remaining data was graphed using a wind speed based plot to establish whether there are any remaining data outliers, representing atypical noise sources or events.
- 5. Once the remaining data sets were found to be representative of the noise environment, they were analysed to ensure that sufficient data remained to provide sufficient data coverage over the necessary wind speeds. The IOA Good Practice Guide (May 2013) requires, as a minimum, no fewer than five valid data sets across each 1 m/s wind speed from turbine cut-in to rated power. Where integer wind speeds have less than five valid data sets, the prevailing background noise trend will not be extended beyond the range covered by adequate data sets. See Section 'Data Available for Determination of Prevailing Background Noise Levels' for details.
- 6. A 'best fit' trend (not higher than a fourth order polynomial) was then derived to present the assumed prevailing background noise level at each monitoring location. See Section 'Results' for details.

Data Available for Determination of Prevailing Background Noise Levels

The requirement for the survey duration is dictated by the range of wind speeds to be collected. The IOA Good Practice Guide to the Application of ETSU-R-97¹ for the Assessment and Rating of Wind Turbine Noise, (May 2013) states that "As a guideline, no fewer than 200 data points should be recorded in each of the amenity hours and night-time periods with no fewer than 5 data points in any 1 m/s wind speed bin."

¹ Department of Trade and Industry (1996), The Assessment and Rating of Noise from Wind Farms Report ETSU-R-97

The Wind Energy Development Guidelines (Department of Environment, Heritage and Local Government, 2006) do not provide the specific periods which are represented by daytime and night-time hours, therefore the definitions from ETSU-R-97 are taken as 07:00 to 23:00 hrs for daytime and 23:00 to 07:00 hrs for night-time.

Prevailing background noise levels were derived for night-time periods. The number of valid datasets are shown in Tables 8.1.4 and 8.1.5 with wind speed ranges greyed out which did not satisfy the criteria of at least 5 data points in any 1 m/s wind speed bin.

Table 8.1.4: Number of Valid Datasets: Noise Monitoring Locations - Nighttime8

Wind Speed (at	Valid Datasets									
Wind Speed (at standardised 10 m	R6		F	R25		R51		R71		
height), m/s	Day	Night	Day	Night	Day	Night	Day	Night		
0	20	6	20	6	31	28	31	28		
1	71	30	73	30	114	104	114	104		
2	90	62	94	62	163	91	162	91		
3	80	55	81	55	137	90	137	90		
4	107	76	104	77	84	84	83	84		
5	54	75	57	79	84	39	84	39		
6	68	100	68	105	42	42	42	42		
7	104	103	107	105	46	42	46	42		
8	77	43	78	49	42	31	42	31		
9	41	20	42	23	17	26	17	26		
10	43	28	44	29	6	24	6	24		
11	43	15	44	15	9	7	9	7		
12	23	17	24	23	16	9	16	9		
13	30	21	30	25	8	2	8	2		
14	10	3	11	6	0	1	0	1		
Total Number of Data Points	861	654	877	689	799	620	797	620		
	Did ı	not satisfy	the criter	ia of at least	5 data poin	ts in any 1 n	n/s wind spe	ed bin		

Results

In this section, the prevailing background noise level in dB L_{A90} relative to standardised 10 m height wind speeds are provided for each monitoring location as per the requirements of the survey. The prevailing background noise level is plotted as a solid line for the night-time periods at each monitoring location. In all cases, the highest order of polynomial used is a fourth order polynomials provided lines of best fit to the scatter data.

Image A8.1: Prevailing Daytime Background (LA90) Noise Levels at R6

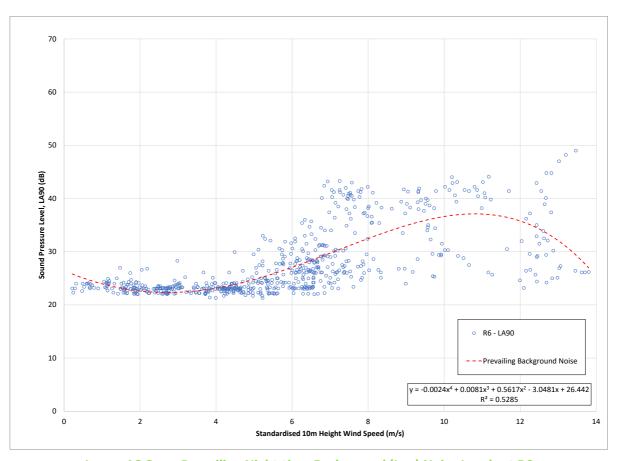


Image A8.2: Prevailing Night-time Background (L_{A90}) Noise Levels at R6

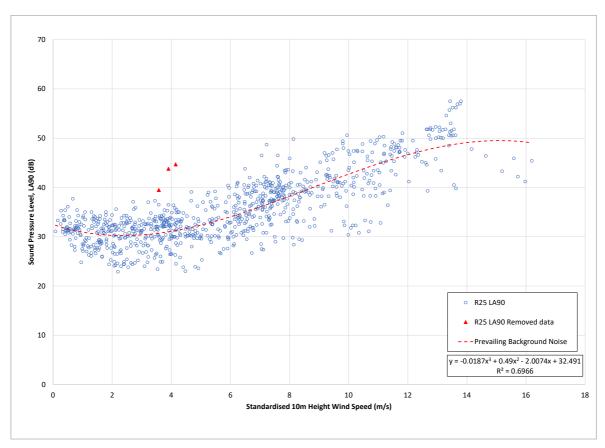


Image A8.3: Prevailing Daytime Background (LA90) Noise Levels at R25

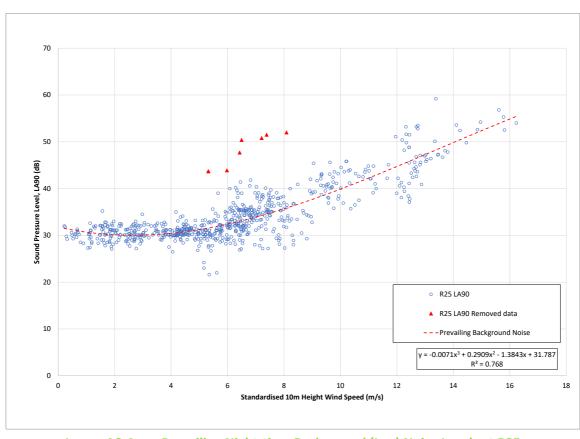


Image A8.4: Prevailing Night-time Background (LA90) Noise Levels at R25

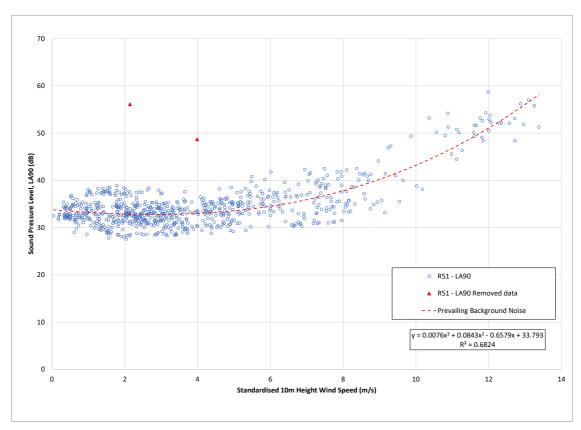


Image A8.5: Prevailing Daytime Background (LA90) Noise Levels at R51

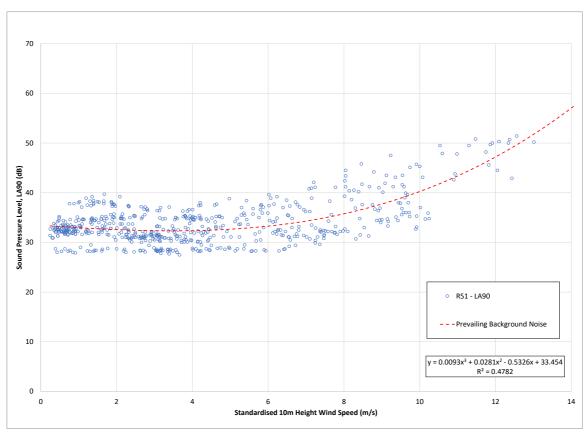


Image A8.6: Prevailing Night-time Background (LA90) Noise Levels at R51

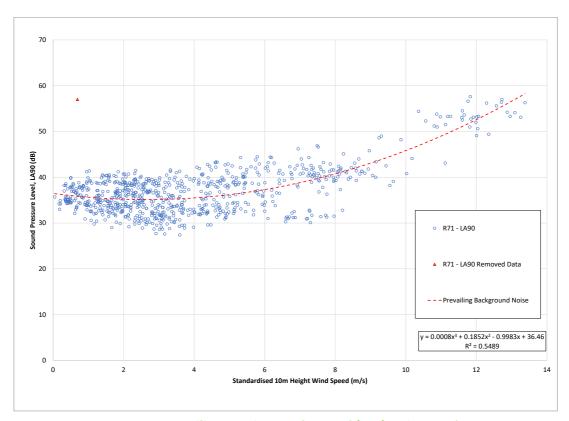


Image A8.7: Prevailing Daytime Background (LA90) Noise Levels at R71

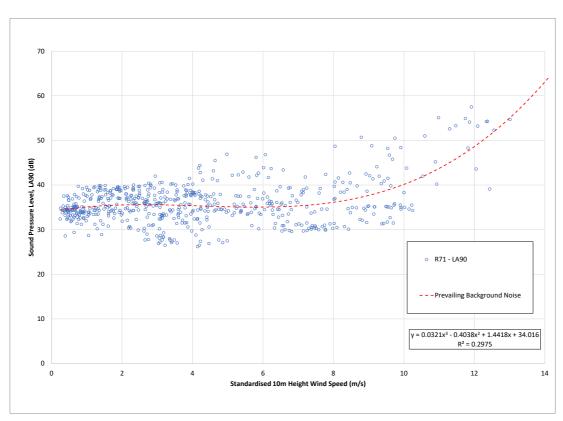


Image A8.8: Prevailing Night-time Background (LA90) Noise Levels at R71

Prevailing Background Noise – Daytime Periods Table 8.1.7:

Location	Prevailing Background Noise L _{A90,10min} (dB) at Standardised 10 m Height Wind Speed (m/s)									s)			
Location	2	3	4	5	6	7	8	9	10	11	12	13	14
R6	30.2	30.2	31.0	32.4	34.2	36.1	37.8	39.1	39.8	§39.8	§39.8	§39.8	§39.8
R25	29.3	29.7	30.8	32.5	34.7	37.0	39.5	42.0	44.3	46.3	47.8	48.7	§ 48.7
R51	32.8	32.7	32.9	33.5	34.4	35.8	37.7	40.1	43.1	46.7	51.0	56.0	§ 56.0
R71	35.2	35.2	35.5	36.2	37.3	38.8	40.7	43.1	45.8	49.0	52.5	56.6	§ 56.6

^{§ -} noise level restricted to the highest derived point
* - noise level restricted to lowest derived point

Table 8.1.8: Prevailing Background Noise – Night-time Periods

Lacation	P	Prevailing Background Noise L _{A90,10min} (dB) at Standardised 10 m Height Wind Speed (m/s)											
Location	2	3	4	5	6	7	8	9	10	11	12	13	14
R6	22.5	22.0	22.2	22.9	23.9	24.8	25.3	§25.	§25.	§25.3	§25.3	§25.3	§25.3
R25	30.1	30.1	30.4	31.2	32.4	33.9	35.7	37.7	39.9	42.2	44.7	47.2	49.8
R51	32.6	32.4	32.4	32.7	33.3	34.3	35.8	37.7	40.2	43.4	47.2	§47.2	§47.2
R71	35.5	35.6	35.4	35.1	35.1	35.3	36.1	37.7	40.2	43.7	48.6	§48.6	§48.6

^{§ -} noise level restricted to the highest derived point
* - noise level restricted to lowest derived point

APPENDIX 8.1b EQUIPMENT CALIBRATION CERTIFICATES

National Metrology Laboratory

Certificate of Calibration

Issued to

Fehily Timoney & Company

J5 Plaza

North Business Park

North Road Dublin 11

Attention of

John Mahon

Certificate Number

194958 Svantek SVAN 977 Sound Level Meter with ACO 7052E Microphone

34173 (SLM) and 54691 (Microphone)

Item Calibrated Serial Number Client ID Number

6678

Order Number Date Received NML Procedure Number

20 Dec 2019 AP-NM-09

Method

The above sound level meter was allowed to stabilise for a suitable period in laboratory conditions. It was then calibrated by carrying out the verification tests detailed in IEC 61672-3 (2006), *Periodic tests, specification for the verification of sound level meters.* This standard specifies a procedure for the periodic verification of conformance of a sound level meter or integrating-averaging meter to IEC 61672-1 (2003).

Calibration Standards

Norsonic 1504A Calibration System incorporating: SR DS360 Signal Generator, No. 0735 [Cal Due Date: 31 Jan 2020] Agilent 34401A Digital Multimeter, No. 0736 [Cal Due Date: 31 Jan 2020] B&K 4134 Measuring Microphone, No. 0743 [Cal Due Date: 24 Apr 2021] B&K 4228 Pistonphone, No. 0741 [Cal Due Date: 19 Jan 2020] B&K 4226 Acoustical Calibrator, No. 0150 [Cal Due Date: 21 Jun 2020]

Calibrated by

David Fleming

Approved by

C. Hell Paul Hetherington

Date of Calibration

10 Jan 2020

Date of Issue

10 Jan 2020

This certificate is consistent with Calibration and Measurement Capabilities (CMC's) that are included in Appendix C of the Mutual Recognition Arrangement (MRA) drawn up by the international Committee for Weights and Measures. Under the MRA, all participating institutes recognize the validity of each other's calibration certificates and measurement reports for quantities, ranges and measurement uncertainties specified in Appendix C (for details see www.bipm.org)

National Metrology Laboratory

Certificate of Calibration

Issued to

Fehily Timoney & Company

J5 Plaza

North Business Park

North Road Dublin 11

Attention of

John Mahon

Certificate Number Item Calibrated

194959 Svantek SVAN 977 Sound Level Meter with ACO 7052E Microphone

Serial Number

34876 (SLM) and 56429 (Microphone)

Client ID Number Order Number

#2 6678

Date Received NML Procedure Number

20 Dec 2019 AP-NM-09

Method

The above sound level meter was allowed to stabilise for a suitable period in laboratory conditions. It was then calibrated by carrying out the verification tests detailed in IEC 61672-3 (2006), *Periodic tests, specification for the verification of sound level meters.* This standard specifies a procedure for the periodic verification of conformance of a sound level meter or integrating-averaging meter to IEC 61672-1 (2003).

Calibration Standards

Norsonic 1504A Calibration System incorporating: SR D5360 Signal Generator, No. 0735 [Cal Due Date: 31 Jan 2020] Agilent 34401A Digital Multimeter, No. 0736 [Cal Due Date: 31 Jan 2020] B&K 4134 Measuring Microphone, No. 0743 [Cal Due Date: 24 Apr 2021] B&K 4228 Pistonphone, No. 0741 [Cal Due Date: 19 Jan 2020] B&K 4226 Acoustical Calibrator, No. 0150 [Cal Due Date: 21 Jun 2020]

Calibrated by

Approved by

Helle Paul Hetherington

Date of Calibration

David Fleming

Date of Issue

10 Jan 2020

This certificate is consistent with Calibration and Measurement Capabilities (CMC's) that are included in Appendix C of the Mutual Recognition Arrangement (MRA) drawn up by the international Committee for Weights and Measures. Under the MRA, all participating institutes recognize the validity of each other's calibration certificates and measurement reports for quantities, ranges and measurement uncertainties specified in Appendix C (for details see www.bipm.org)

Calibration Certificate

Certificate Number 202 Customer: Environmental Measurer Unit 12 Tallaght Business ont 12 Tallaght Business Centre Whitestown Business Park Dublin, 24, Ireland

Procedure Number D0001.8378 Ron Harris Calibration Date Calibration Due Model Number LxT SE Serial Number 0006241 Test Results Pass

Initial Condition As Manufactured 23.69 °C ±0.25 °C 50.5 %RH ±2.0 %RH 86.75 kPa ±0.13 kPa Description Sound Expert LxT
Class 1 Sound Level Meter

Firmware Revision: 2.404

Evaluation Method

Tested electrically using Larson Davis PRMLxT1L S/N 069977 and a 12.0 pF capacitor to simulate microphone capacitance. Data reported in dB re 20 µPa assuming a microphone sensitivity of 23.6 mV/Pa.

Compliance Standards Compliant to Manufacturer Specifications and the following standards when combined with Calibration Certificate from procedure D0001.8384:

IEC 60851:2001 Type 1 ANSI S1.4-2014 Class 1
IEC 60804:2000 Type 1 ANSI S1.4 (R2006) Type 1
IEC 61252:2002 ANSI S1.2 (R2007)
IEC 61250:2013 Class 1 ANSI S1.43 (R2007) Type 1
IEC 61260:2001 Class 1 ANSI S1.11 (R2009) Class 1

issuing lab certifies that the instrument described above meets or exceeds all specifications as stated in the referenced procedure (unless otherwise noted). It has been calibrated using measurement standards traceable to the international System of Units (SI) through the National Institute of Standards and Technology (NIST), or other national measurement institutes, and meets the requirements of ISOIEC 170252017. Test points marked with a ‡ in the uncertainties column do not fall within this laboratory's scope of accreditation.

The quality system is registered to ISO 9001:2015.

This calibration is a direct comparison of the unit under test to the listed reference standards and did not involve any sampling plans to complete. No allowance has been made for the instability of the test device due to use, time, etc. Such allowances would be made by the customer as needed.

The uncertainties were computed in accordance with the ISO Guide to the Expression of Uncertainty in Measurement (GUM). A coverage factor of approximately 2 sigms (κ <2) has been applied to the standard uncertainty to express the expanded uncertainty at approximately 99% confidence level.

This report may not be reproduced, except in full, unless permission for the publication of an approved abstract is obtained in writing from the organization issuing this report.

Correction data from Larson Davis LxT Manual for SoundTrack LxT & SoundExpert Lxt. I770.01 Rev O Supporting Firmware Version 4.0.5. 2019-09-10

Calibration Check Frequency: 1000 Hz; Reference Sound Pressure Level: 114 dB re 20 µPa

LARSON DAVIS - A PCB PIEZOTRONICS DIV. 1681 West 820 North Provo, UT 84601, United States 716-684-0001

IRIC MEA

Page 1 of 8

CERTIFICATE OF CALIBRATION

MTS Calibration Ltd.

Laboratory address: Telephone: +44 (0)1642 876 410

17 Elvington Close Billingham TS23 3YS England

Please note delivery address below

26 April 2019 Date of Issue:

Third-Octave Band Digital Filter Third-Octave Band Filter verification to BS EN 61260:1996

Client:

Environmental Measurements

Unit 12, Tallaght Business Centre Co.Dublin 24, Ireland

Instrument Make: Serial Number:

Larson Davis 0004642

Larson Davis

The centre frequency sequence of this filter set follows the exact base 10 midband frequency

sequence of IEC 61260 and measurements have been mode accordingly Calibrated by: MTS

Associated Preamplifler:

- Make : Lerson possor - Model : PRVLxT1L - Serial Number: 036048

Certificate Number: 33234 Date: 26 April 2019

Associated Sound Level Meter

- Make: Larson Der - Model: LXT1 - Serial Number: 0004642 Larson Davis

Calibrated by: miss Certificate Mumber: 33234 Date: 26 April 2019

This is to certify that this instrument, whose calibration records are encised in this life, here been tested in accordance with MTS Calibration Ltd. Week Procedures. The instrument as configured above had been found to be in compliance with advantation and trappared pharaceristics as specified by ISS NR SIDES 1996 and the results are exposed in the following pages and its estimated below. The needle advantage of the results are exposed in the following pages and its estimated below. The needle advantage of the standard, and not configured to the standard in the configuration of the standard in the

Because a digital filter will have the same amplitude characteristic relative to its centre frequency, only three filters were measured at each of the test frequencies specified by BS EN 61260-1996 for BASE-10 distribution. The measurements made were relative to the attenuation of the 1kHz filter at 1kHz input frequency and input level 1V. Because the measurements include a linearity contribution from the sound level meter, and could be variable with frequency, the assessment is valid only for this pairing. The sound level meter was set for "Lineat" frequency response on the lowest range setting which did not give overload at any test frequency or test level. Its compliance with the standard was assessed by referring the measurements to the tolerances specified.

Compliance with BS EN 61250: 1996 Class 1

125 Hz complies 8kHz complies

Test Equipment:

Date of Receipt: Date of Calibration:

17 April 2019

Authorised signatory:

26 April 2019 Date of Certificate: 26 April 2019

Tony Sherris

MTS Calibration Ltd.

The Grange Business Centre, Belasis Avenue, Billingham TS23 1LG

Telephone: 03642 876410 Fax: 01642 876411 E-Mail: śmarsh@slmcal.co.uk or shinris@slmcal.co.uk

APPENDIX 8.1c NOISE SENSITIVE LOCATION DETAILS

 Table 8.3.1:
 Noise Sensitive Location Details

Receptor ID	Description	Easting	Northing		
R1	Residential	621065	608272		
R2	Residential	623391	611537		
R3	Residential	621496	607637		
R4	Residential				
R5	Residential	621878	608395		
R6	Residential	623031	611483		
R7	Derelict	622884	611283		
R8	Residential	622974	611677		
R9	Residential	622999	611786		
R10	Residential and Commercial	623568	611446		
R11	Residential	623024	611985		
R12	Residential	623302	612263		
R13	Residential	625107	612625		
R14	Residential	625500	612144		
R15	Residential	625334	612295		
R16	Residential	622609	606911		
R17	Residential	624985	612644		
R18	Residential and Commercial	625354	612428		
R19	Residential	625886	612382		
R20	Residential	621793	611630		
R21	Residential	623003	611907		
R22	Residential	623341	606277		
R23	Residential	623433	606418		
R24	Residential	622979	611649		
R25	Residential	623946	607257		
R26	Derelict	622643	606939		
R27	Residential	623301	606455		
R28	Residential	621783	608562		
R29	Residential	625923	612368		
R30	Commercial	623308	606270		
R31	Residential	623329	606188		
R32	Residential	623400	606029		
R33	Residential	623381	606034		
R34	Residential	623292	606034		
R35	Derelict	622046	607526		
R36	Residential	622014	607615		
R37	Derelict	621722	607346		
R38	Residential	622604	606872		
R39	Residential and Commercial	622531	607125		
R40	Residential and Commercial	624121	607487		
R41	Residential and Commercial	624113	607386		

Receptor ID	Description	Easting	Northing
R42	Residential and Commercial	623807	607124
R43	Residential	622828	607021
R44	Residential	623477	606691
R45	Residential	623374	606221
R46	Residential and Commercial	623140	606114
R47	Residential	621896	609618
R48	Residential and Commercial	621081	608930
R49	Residential and Commercial	621821	608397
R50	Residential and Commercial	622087	609247
R51	Residential	622164	608864
R52	Derelict	621958	608937
R53	Residential and Commercial	622112	608738
R54	Residential and Commercial	622177	607400
R55	Residential	621759	607447
R56	Residential and Commercial	622660	606717
R57	Residential and Commercial	622243	611756
R58	Residential and Commercial	622259	611767
R59	Derelict	623754	605714
R60	Residential and Commercial	624236	606087
R61	Residential	623767	605835
R62	Residential and Commercial	623980	606203
R63	Residential	622997	611559
R64	Residential and Commercial	623595	611301
R65	Residential	626233	612278
R66	Residential	625348	612447
R67	Residential	623399	611481
R68	Derelict	623527	611371
R69	Residential	623521	611522
R70	Residential	626341	612341
R71	Residential and Commercial	626022	612247
R72	Residential and Commercial	625913	612352
R73	Residential	625432	612254
R74	Residential	625359	612412
R75	Residential and Commercial	625098	612517
R76	Residential and Commercial	624914	612878
R77	Residential	625975	612459
R78	Residential and Commercial	622631	611699
R79	Residential and Commercial	622691	611714
R80	Residential	626093	612357
R81	Residential	623192	612366
R87	Residential	619423	605342
R98	Residential	619400	605980
R99	Residential	619402	605955

Receptor ID	Description	Easting	Northing	
R100	Residential	619349	605836	
R101	Residential	619336	605835	
R102	Residential	619323	605834	
R103	Residential	619313	605832	
R104	Residential	619360	605799	
R105	Residential	619363	605789	
R114	Residential and Commercial	618969	606439	
R118	Residential	619305	607293	
R121	Residential	619315	605865	
R122	Residential	619319	605877	
R123	Residential	619324	605890	
R124	Residential	619328	605903	
R145	Residential	619078	606497	
R146	Residential	619331	605916	
R147	Residential	619332	605925	
R148	Residential	619481	605553	
R152	Residential	617683	608426	
R162	Residential	619134	606463	
R173	Residential	619627	604526	
R252	Residential	619368	606046	
R253	Residential	619408	605858	
R254	Residential	619419	605825	
R255	Residential	619385	606019	
R256	Residential and Commercial	619773	606040	
R257	Residential	619368	605775	
R258	Residential	619375	605750	
R259	Residential	619382	605739	
R260	Residential	619384	605728	
R261	Residential	619395	605702	
R262	Residential	619397	605689	
R263	Residential and Commercial	619441	605677	
R264	Residential and Commercial	619441	605677	
R265	Residential	619482	605610	
R266	Residential	619439	605529	
R267	Residential	619508	605547	
R268	Residential	619415	605278	
R269	Residential	619629	605159	
R270	Residential	619490	605181	
R276	Residential	619469	605050	
R277	Residential and Commercial	619630	606736	
R278	Residential	619082	606583	
R279	Residential and Commercial	619060	606615	
R280	Residential	619050	606700	

Receptor ID	Description	Easting	Northing		
R282	Residential	619371	607284		
R283	Residential	619397	605890		
R284	Residential	619370	605763		
R285	Residential	619387	605717		
R286	Residential and Commercial	619469	605568		
R287	Residential and Commercial	619768	605800		
R288	Residential	619320	606367		
R289	Residential	619297	606229		
R290	Residential	619297	606221		
R291	Residential	619276	606308		
R292	Residential and Commercial	619185	606325		
R293	Residential	619139	606375		
R294	Residential	619156	606508		
R296	Residential	619513	604911		
R298	Residential	619375	604957		
R323	Residential	619539	604622		
R325	Residential	619431	605366		
R332	Residential	619128	606602		

APPENDIX 8.1.d VALLEY CORRECTION

 Table 8.4.1:
 Valley Correction Coumnagappul Windfarm

Receptor ID	Description	Tı	T ₂	T4	T ₅	Т6	Т7	Т8	T10	T11	T12	
R1	Residential	3	0	3	0	3	0	0	0	0	0	
R2	Residential	0	0	0	0	0	0	0	0	0	0	
R3	Residential	3	0	3	0	0	0	0	0	0	0	
R4	Residential	3	0	3	0	0	0	0	0	0	0	
R5	Residential	3	0	3	0	0	0	0	0	0	0	
R6	Residential	0	0	0	0	0	0	0	0	0	0	
R7	Derelict	3	0	0	0	0	0	0	0	0	0	
R8	Residential	3	0	0	0	0	0	0	0	0	0	
R9	Residential	3	0	0	0	0	0	0	0	0	0	
	Residential and											
R10	Commercial	0	0	0	0	0	0	0	0	0	0	
R11	Residential	3	0	0	0	0	0		0	0	0	0
R12	Residential	0	0	0	0	0	0	0	0	0	0	
R13	Residential	0	0	0	0	0	0	0	0	0	0	
R14	Residential	0	0	0	0	0	0	0	0	0	0	
R15	Residential	0	0	0	0	0	0	0	0	0	0	
R16	Residential	0	0	0	0	0	0	0	0	0	0	
R17	Residential	0	0	0	0	0	0	0	0	0	0	
R18	Residential and Commercial	0	0	0	0	0	0	0	0	0	0	
R19	Residential	0	0	0	0	0 0 0	0	0	0	0	0	
R20	Residential	3	3	3	0	0	0	0	0	0	0	
R21	Residential	3	0	0	0	0	0	0	0	0	0	
R22	Residential	0	0	0	0	3	3	0	3	3	0	
R23	Residential	0	0	0	0	3	3	0	3	3	0	
R24	Residential	3	0	0	0	0	0	0	0	0	0	
R25	Residential	0	0	0	0	3	0	0	0	3	0	
R26	Derelict	0	0	0	0	0	0	0	0	3	0	
R27	Residential	0	0	0	0	3	3	0	3	3	0	
R28	Residential	3	0	3	0	0	0	0	0	0	0	
R29	Residential	0	0	0	0	0	0	0	0	0	0	
R30	Commercial	0	0	0	0	3	3	0	3	3	0	
R31	Residential	0	0	0	0	3	3	0	3	3	0	
R32	Residential	0	0	0	0	3	3	0	3	3	0	
R33	Residential	0	0	0	0	3	3	0	3	3	0	
R34	Residential	0	0	0	0	3	3	0	3	3	0	

Receptor ID	Description	Tı	T2	T4	T ₅	Т6	Т7	Т8	T10	T11	T12
R35	Derelict	3	0	0	0	0	0	0	0	0	0
R36	Residential	3	0	0	0	0	0	0	0	0	0
R37	Derelict	3	0	0	0	0	0	0	0	0	0
R38	Residential	0	0	0	0	0	0	0	0	0	0
R39	Residential and Commercial	0	0	0	0	0	0	0	0	0	0
R40	Residential and Commercial	0	0	0	0	0	0	0	0	0	0
R41	Residential and Commercial	0	0	0	0	0	0	0	0	0	0
R42	Residential and Commercial	0	0	0	0	3	0	0	3	3	0
R43	Residential	0	0	0	0	3	0	0	0	3	0
R44	Residential	0	0	0	0	3	3	0	3	3	0
R45	Residential	0	0	0	0	3	3	0	3	3	0
R46	Residential and Commercial	0	0	0	0	3	3	0	3	3	0
R47	Residential	3	0	3	0	0	0	0	0	0	0
R48	Residential and Commercial	3	0	3	0	0	0	0	0	0	0
R49	Residential and Commercial	3	0	3	0	0	0	0	0	0	0
R50	Residential and Commercial	3	0	3	0	0	0	0	0	0	0
R51	Residential	3	0	0	0	0	0	0	0	0	0
R52	Derelict	3	0	3	0	0	0	0	0	0	0
R53	Residential and Commercial	3	0	0	0	0	0	0	0	0	0
R54	Residential and Commercial	0	0	0	0	0	0	0	0	0	0
R55	Residential	3	0	0	0	0	0	0	0	0	0
R56	Residential and Commercial	0	0	0	0	0	0	0	0	3	0
R57	Residential and Commercial	3	0	0	0	0	0	0	0	0	0
R58	Residential and Commercial	3	0	0	0	0	0	0	0	0	0
R59	Derelict	3	3	0	3	3	3	3	3	3	3
R60	Residential and Commercial	3	3	3	3	3	3	3	3	0	3

Danastas ID	tor ID Description												
Receptor ID			T ₂	T4	T ₅	Т6	Т7	Т8	T10	T11	T12		
R61	Residential	0	3	0	3	3	3	3	3	3	3		
	Residential and						_	_	_	_			
R62	Commercial	0	3	0	3	3	3	0	3	0	0		
R63	Residential	0	0	0	0	0	0	0	0	0	0		
R64	Residential and Commercial	0	0	0	0	0	0	0	0	0	0		
R65	Residential	0	3	0	0	0	0	0	0	0	0		
R66	Residential	0	0	0	0	0	0	0	0	0	0		
R67	Residential	0	0	0	0	0	0	0	0	0	0		
R68	Derelict	0	0	0	0	0	0	0	0	0	0		
R69	Residential	0	0	0	0	0	0	0	0	0	0		
R70	Residential	3	3	0	0	0	0	0	0	0	0		
R71	Residential and Commercial	0	0	0	0	0	0	0	0	0	0		
R72	Residential and Commercial	0	0	0	0	0	0	0	0	0	0		
R73	Residential	0	0	0	0	0	0	0	0	0	0		
R74	Residential	0	0	0	0	0	0	0	0	0	0		
R75	Residential and Commercial	0	0	0	0	0	0	0	0	0	0		
R76	Residential and Commercial	0	0	0	0	0	0	0	0	0	0		
R77	Residential	0	0	0	0	0	0	0	0	0	0		
R78	Residential and Commercial	3	0	0	0	0	0	0	0	0	0		
R79	Residential and Commercial	3	0	0	0	0	0	0	0	0	0		
R80	Residential	0	3	0	0	0	0	0	0	0	0		
R81	Residential	3	0	0	0	0	0	0	0	0	0		

 Table 8.4.1:
 Valley Correction Dyrick Hill and Tierney Windfarm

Receptor												
ID	Tı	T2	Т4	T ₅	Т6	Т7	Т8	T10	T11	T12	T13	Tierny 1
R82_A	0	0	0	0	0	0	3	0	0	0	0	3
R83_A	0	0	0	0	0	0	3	0	0	0	0	0
R87_A	0	0	0	0	0	3	3	0	3	3	0	0
R88_A	0	0	0	0	0	0	3	0	0	3	3	0
R89_A	0	0	0	0	0	0	3	0	0	0	0	0
R94_A	0	0	0	0	0	0	3	0	0	0	0	3
R95_A	0	0	0	0	0	0	3	0	0	0	0	3
R96_A	0	0	0	0	0	0	3	0	0	0	0	3
R97_A	0	0	0	0	0	3	3	0	0	3	3	3
R98_A	0	0	0	0	0	3	3	0	3	3	0	0
R99_A	0	0	0	0	0	3	3	0	3	3	0	0
R100_A	0	0	0	0	0	3	3	0	3	3	0	0
R101_A	0	0	0	0	0	3	3	0	3	3	0	0
R102_A	0	0	0	0	0	3	3	0	3	3	0	0
R103_A	0	0	0	0	0	3	3	0	3	3	0	0
R104_A	0	0	0	0	0	3	3	0	3	3	0	0
R105_A	0	0	0	0	0	3	3	0	3	3	0	0
R106_A	0	0	0	0	0	0	3	0	0	0	3	0
R107_A	0	3	0	3	0	3	0	0	0	3	0	0
R108_A	0	0	0	0	0	0	3	0	0	3	3	3
R109_A	0	0	0	0	0	0	3	0	0	0	3	3
R110_A	0	0	0	0	0	0	3	0	0	0	3	3
R111_A	0	0	0	0	0	0	3	0	0	0	0	0
R112_A	0	0	0	0	0	0	3	0	0	0	0	0
R113_A	0	0	0	0	0	0	3	0	0	0	0	3
R114_A	0	0	0	0	0	3	3	0	3	3	3	3
R116_A	0	0	0	0	0	0	3	0	0	0	0	0
R117_A	0	0	0	0	0	0	3	0	0	0	0	0
R118_A	0	0	3	3	3	3	3	0	3	0	0	0
R119_A	0	0	0	0	0	0	3	0	0	0	3	0
R120_A	0	0	0	0	0	0	3	0	0	0	3	0
R121_A	0	0	0	0	0	3	3	0	3	3	0	0
R122_A	0	0	0	0	0	3	3	0	3	3	0	0
R123_A	0	0	0	0	0	3	3	0	3	3	0	0

Receptor												
ID	T1	T ₂	Т4	Т5	Т6	Т7	Т8	T10	T11	T12	T13	Tierny 1
R124_A	0	0	0	0	0	3	3	0	3	3	0	0
R125_A	0	0	0	0	0	0	3	0	0	0	0	3
R126_A	0	0	0	0	0	0	3	0	0	0	0	3
R127_A	0	0	0	0	0	0	3	0	0	0	0	0
R128_A	0	0	0	0	0	0	3	0	0	0	0	0
R129_A	0	0	0	0	0	0	3	0	0	0	0	3
R130_A	0	0	0	0	0	0	3	0	0	0	0	3
R131_A	0	0	0	0	0	0	3	0	0	0	3	3
R132_A	0	0	0	0	0	3	3	0	0	3	3	3
R133_A	0	0	0	0	0	3	3	0	0	3	3	3
R134_A	0	0	0	0	0	0	3	0	0	3	3	3
R135_A	0	0	0	0	0	0	3	0	0	0	0	3
R136_A	0	0	0	0	0	0	3	0	0	0	0	3
R137_A	0	0	0	0	0	0	3	0	0	0	3	3
R138_A	0	0	0	0	0	3	0	0	0	3	0	0
R139_A	3	3	3	3	3	3	0	3	3	0	0	0
R142_A	0	0	0	0	0	0	3	0	0	0	0	0
R145_A	0	0	0	3	0	3	3	0	3	3	3	3
R146_A	0	0	0	0	0	3	3	0	3	3	0	0
R147_A	0	0	0	0	0	3	3	0	3	3	0	0
R148_A	0	0	0	0	0	3	3	0	3	3	0	0
R149_A	0	0	0	3	3	3	3	0	3	3	3	3
R150_A	0	0	0	0	0	0	3	0	0	3	3	3
R151_A	0	0	0	0	0	0	3	0	0	3	3	0
R152_A	0	0	0	3	3	3	3	0	3	3	3	3
R153_A	0	0	0	0	0	0	3	0	0	0	3	0
R157_A	0	0	0	0	0	3	3	0	3	3	3	3
R158_A	0	0	0	0	0	0	3	0	0	0	3	3
R159_A	0	0	0	0	0	0	3	0	0	0	0	0
R160_A	0	0	0	0	0	0	3	0	0	0	3	3
R161_A	0	0	0	0	0	0	3	0	0	0	3	3
R162_A	0	0	0	3	0	3	3	0	3	3	3	3
R163_A	0	0	0	0	0	0	3	0	0	0	0	3
R164_A	0	0	0	0	0	0	3	0	0	0	0	0
R165_A	0	0	0	0	0	0	0	0	0	0	0	0

Receptor												
ID	Tı	T2	Т4	Т5	Т6	Т7	Т8	T10	T11	T12	T13	Tierny 1
R166_A	0	0	0	0	0	0	0	0	0	0	0	0
R167_A	0	0	0	0	0	0	3	0	0	0	3	0
R173_A	3	3	3	3	3	3	0	0	3	0	0	0
R174_A	0	0	0	0	0	0	3	0	0	0	0	3
R175_A	0	0	0	0	0	0	3	0	0	0	0	0
R176_A	0	0	0	0	0	0	3	0	0	0	0	0
R177_A	0	0	0	0	0	0	3	0	0	0	0	0
R178_A	0	0	0	0	0	0	3	0	0	0	0	3
R179_A	0	0	0	0	0	3	3	0	0	0	0	3
R180_A	0	0	0	0	0	3	3	0	0	0	0	3
R181_A	0	0	0	0	0	0	3	0	0	0	0	0
R182_A	0	0	0	0	0	0	3	0	0	0	0	3
R183_A	0	0	0	0	0	0	3	0	0	0	0	0
R184_A	0	0	0	0	0	0	3	0	0	0	3	3
R185_A	0	0	0	0	0	0	3	0	0	0	3	3
R186_A	0	0	0	0	0	0	3	0	0	0	3	3
R187_A	0	0	0	0	0	0	3	0	0	0	3	3
R201_A	0	0	0	0	0	0	3	0	0	0	0	3
R202_A	0	0	0	0	0	0	3	0	0	0	0	3
R203_A	0	0	0	0	0	0	3	0	0	0	0	3
R204_A	0	0	0	0	0	0	3	0	0	0	0	3
R205_A	0	0	0	0	0	0	3	0	0	0	0	3
R206_A	0	0	0	0	0	0	3	0	0	0	0	3
R207_A	0	0	0	0	0	0	3	0	0	0	0	3
R208_A	0	0	0	0	0	0	3	0	0	0	0	3
R209_A	0	0	0	0	0	0	3	0	0	0	0	3
R210_A	0	0	0	0	0	0	3	0	0	3	3	3
R211_A	0	0	0	0	0	3	3	0	0	3	3	3
R212_A	0	0	0	0	0	3	3	0	0	3	3	3
R213_A	0	0	0	0	0	0	3	0	0	3	3	3
R214_A	0	0	0	0	0	0	3	0	0	3	3	3
R215_A	0	0	0	0	0	0	3	0	0	0	3	3
R216_A	0	0	0	0	0	0	3	0	0	0	3	3
R217_A	0	0	0	0	0	0	3	0	0	0	3	3
R222_A	0	0	0	0	0	0	3	0	0	3	3	0

Receptor												
ID	Tı	T ₂	T4	T ₅	Т6	Т7	Т8	T10	T11	T12	T13	Tierny 1
R223_A	0	0	0	0	0	0	0	0	0	0	0	0
R224_A	0	0	0	0	0	0	3	0	0	0	3	0
R225_A	0	0	0	0	0	0	0	0	0	0	0	0
R226_A	0	0	0	0	0	0	3	0	0	0	0	0
R227_A	0	0	0	0	0	0	3	0	0	0	0	3
R228_A	0	0	0	0	0	0	3	0	0	0	3	3
R229_A	0	0	0	0	0	0	3	0	0	0	0	3
R230_A	0	0	0	0	0	0	3	0	0	0	0	3
R231_A	0	0	0	0	0	0	3	0	0	0	0	3
R232_A	0	0	0	0	0	3	3	0	0	3	3	3
R233_A	0	0	0	0	0	0	3	0	0	3	3	3
R234_A	0	0	0	0	0	0	3	0	0	0	3	3
R235_A	0	0	0	0	0	0	0	0	0	0	0	0
R236_A	0	0	0	0	0	0	0	0	0	0	0	0
R237_A	0	0	0	0	0	0	0	0	0	0	0	0
R238_A	0	0	0	0	0	0	0	0	0	0	0	0
R239_A	0	0	0	0	0	0	3	0	0	0	0	0
R240_A	0	0	0	0	0	0	3	0	0	0	0	0
R241_A	0	0	0	0	0	0	3	0	0	0	0	3
R242_A	0	0	0	0	0	0	3	0	0	0	0	3
R243_A	0	0	0	0	0	0	3	0	0	3	3	3
R244_A	0	0	0	0	0	0	3	0	0	3	3	3
R245_A	0	0	0	0	0	0	3	0	0	0	0	3
R246_A	0	0	0	0	0	0	3	0	0	0	0	3
R247_A	0	0	0	0	0	0	3	0	0	0	0	3
R248_A	0	0	0	0	0	0	3	0	0	0	0	0
R249_A	0	0	0	0	0	0	0	0	0	0	0	0
R250_A	0	0	0	0	0	0	3	0	0	0	0	3
R251_A	0	0	0	0	0	0	3	0	0	0	3	3
R252_A	0	0	0	3	0	3	3	0	3	3	0	0
R253_A	0	0	0	0	0	3	3	0	3	3	0	0
R254_A	0	0	0	0	0	3	3	0	3	3	0	0
R255_A	0	0	0	3	0	3	3	0	3	3	0	0
R256_A	3	3	3	3	3	3	3	0	0	0	0	0
R257_A	0	0	0	0	0	3	3	0	3	3	0	0

Receptor												
ID	T1	T2	Т4	T ₅	Т6	Т7	Т8	T10	T11	T12	T13	Tierny 1
R258_A	0	0	0	0	0	3	3	0	3	3	0	0
R259_A	0	0	0	0	0	3	3	0	3	3	0	0
R260_A	0	0	0	0	0	3	3	0	3	3	0	0
R261_A	0	0	0	0	0	3	3	0	3	3	0	0
R262_A	0	0	0	0	0	3	3	0	3	3	0	0
R263_A	0	0	0	0	0	3	3	0	3	3	0	0
R264_A	0	0	0	0	0	3	3	0	3	3	0	0
R265_A	0	0	0	0	0	3	3	0	3	3	0	0
R266_A	0	0	0	0	0	3	3	0	3	3	0	0
R267_A	0	0	0	0	0	3	3	0	3	3	0	0
R268_A	0	0	0	0	0	3	3	0	3	3	0	0
R269_A	0	3	3	3	3	3	3	0	3	0	0	0
R270_A	0	0	0	0	0	3	3	0	3	3	0	0
R271_A	3	3	3	3	3	3	0	3	3	0	0	0
R272_A	0	0	0	0	0	0	3	0	0	0	3	0
R273_A	0	0	0	0	0	0	3	0	0	0	3	0
R274_A	0	0	0	0	0	0	3	0	0	3	3	0
R275_A	0	0	0	0	0	0	3	0	0	3	3	0
R276_A	0	0	0	3	0	3	3	0	3	3	0	0
R277_A	0	0	3	3	3	3	3	0	0	0	0	0
R278_A	0	0	0	3	0	3	3	0	3	3	3	3
R279_A	0	0	0	3	0	3	3	0	3	3	3	3
R280_A	0	0	0	3	0	3	3	0	3	3	3	3
R281_A	0	0	0	0	0	3	3	0	3	3	3	3
R282_A	0	0	3	3	3	3	3	0	0	0	0	0
R283_A	0	0	0	0	0	3	3	0	3	3	0	0
R284_A	0	0	0	0	0	3	3	0	3	3	0	0
R285_A	0	0	0	0	0	3	3	0	3	3	0	0
R286_A	0	0	0	0	0	3	3	0	3	3	0	0
R287_A	0	3	3	3	3	3	3	0	0	0	0	0
R288_A	0	0	0	3	0	3	3	0	3	3	0	0
R289_A	0	0	0	3	0	3	3	0	3	3	0	0
R290_A	0	0	0	3	0	3	3	0	3	3	0	0
R291_A	0	0	0	3	0	3	3	0	3	3	0	0
R292_A	0	0	0	3	0	3	3	0	3	3	3	3

Receptor												
ID	T1	T2	Т4	Т5	Т6	Т7	Т8	T10	T11	T12	T13	Tierny 1
R293_A	0	0	0	3	0	3	3	0	3	3	3	3
R294_A	0	0	0	3	0	3	3	0	3	3	3	3
R295_A	0	0	0	0	0	3	3	0	3	3	3	3
R296_A	3	3	3	3	0	3	3	0	3	0	0	0
R297_A	3	3	3	3	3	3	0	0	3	3	0	0
R298_A	0	0	0	0	0	3	3	0	3	3	0	0
R299_A	0	0	3	3	3	3	3	0	3	3	3	3
R300_A	0	0	0	3	0	3	3	0	3	3	3	3
R301_A	0	0	0	3	0	3	3	0	3	3	3	3
R302_A	0	0	0	3	0	3	3	0	3	3	3	3
R303_A	0	0	0	0	0	3	3	0	0	3	3	3
R304_A	0	0	0	0	0	0	3	0	0	0	0	3
R305_A	0	0	0	0	0	0	3	0	0	0	0	3
R306_A	0	0	0	0	0	0	3	0	0	0	0	3
R307_A	0	0	0	0	0	0	3	0	0	0	0	3
R308_A	0	0	0	0	0	0	3	0	0	0	0	3
R309_A	0	0	0	0	0	0	3	0	0	0	0	3
R310_A	0	0	0	0	0	3	3	0	0	0	3	3
R311_A	0	0	0	0	0	0	3	0	0	0	0	3
R312_A	0	0	0	0	0	0	3	0	0	0	3	0
R313_A	0	0	0	0	0	0	3	0	0	0	3	0
R314_A	0	0	0	0	0	0	3	0	0	0	3	0
R315_A	0	0	0	0	0	0	3	0	0	0	0	3
R316_A	0	0	0	0	0	0	3	0	0	0	0	3
R317_A	0	0	0	0	0	0	3	0	0	0	0	3
R318_A	0	0	0	0	0	3	3	0	0	0	0	3
R319_A	0	0	0	0	0	0	3	0	0	0	0	3
R320_A	0	0	0	0	0	0	3	0	0	0	0	3
R321_A	0	0	0	0	0	0	3	0	0	0	0	3
R322_A	0	0	0	0	0	0	3	0	0	0	0	0
R323_A	3	3	3	3	3	3	0	0	3	0	0	0
R324_A	0	0	0	0	0	3	3	0	3	3	3	3
R325_A	0	0	0	0	0	3	3	0	3	3	0	0
R327_A	0	0	0	0	0	0	3	0	0	0	0	3
R328_A	0	0	0	0	0	0	3	0	0	0	0	3

Receptor												
ID	Tı	T2	Т4	T ₅	Т6	Т7	Т8	T10	T11	T12	T13	Tierny 1
R329_A	0	0	0	0	0	0	3	0	0	0	3	3
R330_A	0	0	0	0	0	0	3	0	0	0	0	3
R331_A	0	0	0	0	0	0	3	0	0	0	0	3
R332_A	0	0	0	3	0	3	3	0	3	3	3	3
R333_A	0	0	0	0	0	0	0	0	0	0	3	3
R334_A	0	0	0	0	0	0	3	0	0	0	0	3
R335_A	0	0	0	0	0	0	3	0	0	0	3	0

APPENDIX 8.1e

SOUND POWER LEVEL DATA FOR WIND TURBINES

Table 8.5.1: Wind Turbine (Vestas 162 6.0MW) - Sound Power Data (10 Hz to 10 kHz) Corresponding to Wind Speeds Referenced to Hub Height

Wind Speed (m/s)	2	3	4	5	6	7	8	9	10	11	12	13	14
63	74.2	75.4	76.9	81.0	84.6	85.6	85.5	85.0	84.4	83.7	83.0	82.2	81.2
125	81.9	82.8	84.5	88.6	92.1	93.1	93.0	92.6	92.1	91.7	91.1	90.6	90.0
250.0	86.8	87.5	89.2	93.2	96.8	97.7	97.5	97.3	97.0	96.8	96.5	96.1	95.8
500.0	88.9	89.3	90.9	94.9	98.5	99.4	99.4	99.3	99.2	99.2	99.1	99.0	98.9
1000.0	88.2	88.2	89.7	93.8	97.3	98.3	98.4	98.5	98.6	98.8	98.9	99.1	99.2
2000.0	84.6	84.2	85.6	89.6	93.2	94.2	94.5	94.9	95.3	95.5	95.9	96.2	96.6
4000.0	78.3	77.4	78.5	82.6	86.3	87.3	87.8	88.5	89.1	89.7	90.2	90.7	91.3
8000.0	69.1	67.7	68.5	72.6	76.4	77.5	78.3	79.3	80.1	80.8	81.6	82.3	83.1
LwA	93.9	94.2	95.8	99.8	103.4	104.3	104.3	104.3	104.3	104.3	104.3	104.3	104.3

Table 8.5.2: Wind Turbine (Vestas 162 6.0MW) – Typical 1/1 octave band spectrum for 63 Hz to 8 kHz.

1/1 oct. center freq.	band,	63	125	250	500	1000	2000	4000	8000
2 m/s	S	74.2	81.9	86.8	88.9	88.2	84.6	78.3	69.1
3 m/s	S	75.4	82.8	87.5	89.3	88.2	84.2	77.4	67.7
4 m/s	S	76.9	84.5	89.2	90.9	89.7	85.6	78.5	68.5
5 m/s	S	81.0	88.6	93.2	94.9	93.8	89.6	82.6	72.6
6 m/s	S	84.6	92.1	96.8	98.5	97.3	93.2	86.3	76.4
7 m/s	S	85.6	93.1	97.7	99.4	98.3	94.2	87.3	77.5
8 m/s	S	85.5	93.0	97.5	99.4	98.4	94.5	87.8	78.3
9 m/s	S	85.0	92.6	97.3	99.3	98.5	94.9	88.5	79.3
10 m/	/s	84.4	92.1	97.0	99.2	98.6	95.3	89.1	80.1
11 m/	/s	83.7	91.7	96.8	99.2	98.8	95.5	89.7	80.8
12 m/	/s	83.0	91.1	96.5	99.1	98.9	95.9	90.2	81.6
13 m/	/s	82.2	90.6	96.1	99.0	99.1	96.2	90.7	82.3
14 m/	/s	81.2	90.0	95.8	98.9	99.2	96.6	91.3	83.1

Table 8.5.3: Wind Turbine (Bonus 150 4kW) - Sound Power Data (10 Hz to 10 kHz) Corresponding to Wind Speeds Referenced to Hub Height

Wind Speed (m/s)	4	5	6	7	8	9	10	11
Sound Power level	92.1	93.1	94.2	95.5	96.7	97.6	98.3	98.7

Table 8.5.4: Wind Turbine (Bonus 150 4kW) – Typical 1/1 octave band spectrum for 63 Hz to 8 kHz.

1/1 oct. band center freq.	l, 63	125	250	500	1000	2000	4000	8000	LwA
11 m/s	83.1	88.1	89.1	93.1	93.1	90.1	87.1	80.1	98.7

APPENDIX 8.1f

PREDICTED NOISE LEVELS FROM WIND FARM AT NEARBY NOISE SENSITIVE LOCATIONS

 Table 8.4.1:
 Coumnagappul Windfarm noise at residential locations

Receptor	Description						Win	dspeed	m/s					
ID	Description	2	3	4	5	6	7	8	9	10	11	12	13	14
R1	Residential	17.9	18.6	20.2	24.2	27.8	28.7	28.7	28.4	28.2	28.0	27.8	27.5	27.3
R2	Residential	22.0	22.5	24.2	28.2	31.8	32.6	32.6	32.5	32.3	32.2	32.0	31.8	31.6
R3	Residential	18.5	19.0	20.7	24.7	28.3	29.1	29.1	28.9	28.7	28.6	28.3	28.1	27.9
R4	Residential	20.9	21.5	23.1	27.1	30.7	31.6	31.6	31.4	31.2	31.1	30.8	30.6	30.4
R5	Residential	21.3	21.8	23.4	27.5	31.0	31.9	31.9	31.7	31.6	31.4	31.2	31.0	30.8
R6	Residential	21.2	21.7	23.4	27.4	31.0	31.8	31.8	31.7	31.5	31.4	31.2	31.0	30.8
R7	Derelict	22.9	23.4	25.0	29.0	32.6	33.5	33.5	33.3	33.1	33.0	32.8	32.7	32.5
R8	Residential	21.2	21.8	23.4	27.5	31.0	31.9	31.9	31.7	31.5	31.4	31.2	31.0	30.8
R9	Residential	20.8	21.4	23.0	27.0	30.6	31.4	31.4	31.3	31.1	30.9	30.8	30.6	30.3
	Residential and													
R10	Commercial	23.0	23.5	25.1	29.1	32.7	33.6	33.6	33.4	33.3	33.2	33.0	32.8	32.7
R11	Residential	19.9	20.5	22.1	26.2	29.8	30.6	30.6	30.4	30.2	30.1	29.9	29.7	29.4
R12	Residential	18.3	18.8	20.5	24.5	28.1	28.9	28.9	28.8	28.5	28.4	28.2	28.0	27.7
R13	Residential	17.0	17.6	19.3	23.3	26.9	27.7	27.7	27.5	27.3	27.1	26.9	26.7	26.4
R14	Residential	18.4	19.0	20.6	24.7	28.2	29.1	29.1	28.9	28.7	28.6	28.3	28.1	27.9
R15	Residential	18.1	18.7	20.3	24.3	27.9	28.8	28.8	28.6	28.3	28.2	28.0	27.7	27.5
R16	Residential	20.1	20.7	22.3	26.3	29.9	30.8	30.8	30.6	30.4	30.3	30.1	29.9	29.7
R17	Residential	17.1	17.7	19.3	23.3	26.9	27.8	27.8	27.6	27.3	27.2	26.9	26.7	26.5
R18	Residential and Commercial	17.5	18.1	19.7	23.8	27.3	28.2	28.2	28.0	27.8	27.6	27.4	27.2	26.9
R19	Residential	16.8	17.4	19.0	23.0	26.6	27.5	27.5	27.3	27.0	26.9	26.6	26.4	26.2
R20	Residential	18.6	19.2	20.8	24.9	28.4	29.3	29.3	29.1	28.8	28.7	28.4	28.2	28.0
R21	Residential	20.3	20.8	22.4	26.5	30.0	30.9	30.9	30.8	30.5	30.4	30.2	30.0	29.8
R22	Residential	21.1	21.7	23.3	27.4	30.9	31.8	31.8	31.6	31.4	31.3	31.1	30.9	30.7
R23	Residential	22.0	22.5	24.2	28.2	31.8	32.6	32.6	32.5	32.3	32.1	32.0	31.7	31.5
R24	Residential	21.4	21.9	23.5	27.6	31.2	32.0	32.0	31.8	31.7	31.6	31.4	31.2	31.0
R25	Residential	27.3	27.8	29.4	33.4	37.0	37.9	37.9	37.7	37.6	37.5	37.4	37.2	37.1
R26	Derelict	20.7	21.2	22.9	26.9	30.5	31.3	31.3	31.2	31.0	30.8	30.7	30.4	30.3
R27	Residential	21.8	22.4	24.0	28.0	31.6	32.5	32.5	32.3	32.1	32.0	31.7	31.6	31.4
R28	Residential	21.0	21.6	23.2	27.3	30.8	31.7	31.7	31.5	31.3	31.2	31.0	30.8	30.6
R29	Residential	16.8	17.4	19.0	23.0	26.6	27.4	27.4	27.3	27.0	26.8	26.6	26.4	26.1
R30	Commercial	21.0	21.6	23.2	27.3	30.9	31.7	31.7	31.5	31.3	31.2	30.9	30.7	30.5
R31	Residential	20.7	21.3	23.0	27.0	30.6	31.4	31.4	31.2	31.0	30.9	30.7	30.5	30.3
R32	Residential	20.2	20.8	22.5	26.5	30.1	30.9	30.9	30.7	30.5	30.4	30.2	29.9	29.7
R33	Residential	20.2	20.8	22.5	26.5	30.1	30.9	30.9	30.7	30.5	30.4	30.2	29.9	29.7
R34	Residential	20.0	20.6	22.3	26.3	29.9	30.7	30.7	30.5	30.3	30.2	30.0	29.7	29.5

Receptor	Barrier de la constante de						Wind	dspeed	m/s					
ID	Description	2	3	4	5	6	7	8	9	10	11	12	13	14
R35	Derelict	19.9	20.5	22.1	26.1	29.7	30.6	30.6	30.4	30.2	30.1	29.9	29.6	29.4
R36	Residential	20.0	20.6	22.2	26.2	29.8	30.7	30.7	30.5	30.2	30.1	29.9	29.7	29.5
R37	Derelict	18.3	18.9	20.5	24.5	28.1	29.0	29.0	28.8	28.5	28.4	28.1	27.9	27.7
R38	Residential	20.0	20.5	22.2	26.2	29.8	30.6	30.6	30.5	30.2	30.1	29.9	29.7	29.5
R39	Residential and Commercial	20.6	21.1	22.8	26.8	30.4	31.2	31.2	31.1	30.9	30.7	30.6	30.4	30.2
R40	Residential and Commercial	29.0	29.5	31.1	35.1	38.7	39.6	39.6	39.5	39.3	39.3	39.2	39.1	39.0
R41	Residential and Commercial	28.2	28.6	30.2	34.2	37.8	38.7	38.7	38.6	38.5	38.4	38.3	38.2	38.0
R42	Residential and Commercial	26.7	27.2	28.8	32.8	36.4	37.3	37.3	37.2	37.0	36.9	36.7	36.6	36.5
R43	Residential	21.9	22.4	24.0	28.1	31.6	32.5	32.5	32.3	32.1	32.0	31.8	31.7	31.5
R44	Residential	23.4	23.9	25.6	29.6	33.2	34.0	34.0	33.8	33.7	33.5	33.3	33.2	33.0
R45	Residential	21.0	21.5	23.2	27.2	30.8	31.6	31.6	31.5	31.2	31.1	30.9	30.7	30.5
R46	Residential and Commercial	20.0	20.6	22.2	26.2	29.8	30.7	30.7	30.5	30.2	30.1	29.9	29.7	29.5
R47	Residential	22.2	22.7	24.4	28.4	32.0	32.8	32.8	32.7	32.5	32.4	32.2	32.0	31.8
R48	Residential and Commercial	18.3	18.9	20.6	24.6	28.2	29.0	29.0	28.8	28.6	28.4	28.2	27.9	27.7
R49	Residential and Commercial	21.0	21.6	23.2	27.2	30.8	31.7	31.7	31.5	31.3	31.2	31.0	30.8	30.6
R50	Residential and Commercial	23.2	23.8	25.4	29.4	33.0	33.9	33.9	33.7	33.5	33.4	33.2	33.0	32.8
R51	Residential	22.6	23.1	24.8	28.8	32.4	33.2	33.2	33.1	32.8	32.7	32.6	32.4	32.2
R52	Derelict	22.3	22.9	24.5	28.5	32.1	33.0	33.0	32.8	32.6	32.5	32.3	32.1	31.9
R53	Residential and Commercial	22.2	22.7	24.4	28.4	32.0	32.8	32.8	32.7	32.5	32.4	32.2	32.0	31.8
R54	Residential and Commercial	19.9	20.5	22.1	26.1	29.7	30.6	30.6	30.4	30.2	30.1	29.9	29.7	29.5
R55	Residential	18.6	19.2	20.8	24.9	28.4	29.3	29.3	29.1	28.9	28.7	28.5	28.2	28.1
R56	Residential and Commercial	19.9	20.5	22.2	26.2	29.8	30.6	30.6	30.4	30.2	30.1	29.9	29.7	29.5
R57	Residential and Commercial	18.6	19.3	20.9	24.9	28.5	29.4	29.4	29.2	28.9	28.8	28.6	28.3	28.1
R58	Residential and Commercial	18.7	19.3	20.9	25.0	28.5	29.4	29.4	29.2	28.9	28.8	28.6	28.4	28.1
R59	Derelict	20.8	21.3	23.0	27.0	30.6	31.4	31.4	31.3	31.0	30.9	30.7	30.4	30.2
R60	Residential and Commercial	22.6	23.2	24.8	28.8	32.4	33.3	33.3	33.1	32.9	32.8	32.6	32.3	32.2

Receptor							Win	dspeed	m/s					
ID	Description	2	3	4	5	6	7	8	9	10	11	12	13	14
R61	Residential	21.2	21.8	23.4	27.5	31.0	31.9	31.9	31.7	31.4	31.3	31.1	30.9	30.7
R62	Residential and Commercial	21.8	22.4	24.0	28.0	31.6	32.5	32.5	32.3	32.1	32.0	31.8	31.6	31.4
R63	Residential	20.8	21.3	22.9	27.0	30.5	31.4	31.4	31.2	31.0	30.9	30.7	30.5	30.3
R64	Residential and Commercial	24.0	24.5	26.1	30.1	33.7	34.6	34.6	34.5	34.3	34.2	34.0	33.9	33.7
R65	Residential	17.3	17.9	19.5	23.5	27.1	28.0	28.0	27.8	27.5	27.4	27.1	26.9	26.6
R66	Residential	17.5	18.0	19.7	23.7	27.3	28.1	28.1	27.9	27.7	27.6	27.3	27.1	26.8
R67	Residential	22.4	22.9	24.5	28.5	32.1	33.0	33.0	32.8	32.6	32.5	32.4	32.2	32.0
R68	Derelict	23.3	23.8	25.5	29.5	33.1	33.9	33.9	33.8	33.6	33.6	33.4	33.2	33.1
R69	Residential	22.4	22.9	24.5	28.6	32.1	33.0	33.0	32.9	32.7	32.6	32.4	32.2	32.1
R70	Residential	17.2	17.9	19.5	23.5	27.1	28.0	28.0	27.7	27.5	27.4	27.1	26.8	26.6
R71	Residential and Commercial	17.0	17.6	19.2	23.2	26.8	27.6	27.6	27.5	27.2	27.1	26.8	26.6	26.4
R72	Residential and Commercial	16.8	17.4	19.1	23.1	26.7	27.5	27.5	27.4	27.1	26.9	26.7	26.4	26.2
R73	Residential	18.1	18.7	20.3	24.3	27.9	28.8	28.8	28.6	28.4	28.2	28.0	27.8	27.5
R74	Residential	17.6	18.2	19.8	23.8	27.4	28.3	28.3	28.1	27.8	27.7	27.5	27.2	27.0
R75	Residential and Commercial	17.5	18.1	19.7	23.7	27.3	28.2	28.2	28.0	27.7	27.6	27.4	27.1	26.9
R76	Residential and Commercial	16.2	16.8	18.5	22.5	26.1	26.9	26.9	26.7	26.5	26.3	26.1	25.8	25.6
R77	Residential	16.4	17.0	18.6	22.6	26.2	27.0	27.0	26.9	26.6	26.4	26.2	25.9	25.7
R78	Residential and Commercial	20.1	20.6	22.3	26.3	29.9	30.7	30.7	30.6	30.4	30.2	30.0	29.8	29.7
R79	Residential and Commercial	20.2	20.8	22.4	26.4	30.0	30.9	30.9	30.7	30.5	30.4	30.2	30.0	29.8
R80	Residential	17.3	17.9	19.6	23.6	27.2	28.0	28.0	27.8	27.6	27.4	27.2	26.9	26.7
R81	Residential	18.6	19.2	20.8	24.8	28.4	29.3	29.3	29.1	28.9	28.7	28.5	28.3	28.0

Table 8.4.1: Coumnagappul Windfarm noise at residential locations, including Coumnagappul Transformer, Dyrick Hill and Tierney turbine

Receptor						Wind	speed	m/s					
ID	2	3	4	5	6	7	8	9	10	11	12	13	14
R1_A	20.9	21.3	22.3	25.5	28.8	29.6	29.6	29.4	29.2	29.1	28.9	28.6	28.4
R2_A	23.7	24.1	25.3	28.7	32.0	32.9	32.8	32.7	32.5	32.4	32.2	32.1	31.9
R3_A	21.2	21.6	22.7	25.9	29.1	30.0	29.9	29.8	29.6	29.4	29.2	29.0	28.8
R4_A	23.2	23.5	24.7	27.9	31.2	32.1	32.0	31.9	31.7	31.6	31.3	31.1	30.9
R5_A	23.5	23.9	25.0	28.3	31.5	32.4	32.4	32.2	32.0	31.9	31.7	31.5	31.3
R6_A	23.1	23.5	24.7	28.0	31.3	32.2	32.1	32.0	31.8	31.7	31.5	31.3	31.1
R7_A	24.3	24.7	26.0	29.5	32.8	33.7	33.7	33.5	33.3	33.2	33.0	32.9	32.7
R8_A	22.9	23.3	24.5	28.0	31.3	32.2	32.1	32.0	31.8	31.7	31.4	31.3	31.1
R9_A	22.5	22.9	24.1	27.5	30.9	31.7	31.7	31.5	31.3	31.2	31.0	30.8	30.6
R10_A	24.5	24.9	26.1	29.6	33.0	33.8	33.8	33.6	33.5	33.4	33.2	33.0	32.9
R11_A	21.8	22.2	23.4	26.7	30.1	31.0	30.9	30.7	30.5	30.4	30.2	30.0	29.8
R12_A	20.5	20.9	22.0	25.3	28.5	29.4	29.3	29.1	28.9	28.8	28.6	28.3	28.1
R13_A	19.3	19.7	20.8	24.0	27.3	28.2	28.1	27.9	27.6	27.5	27.3	27.0	26.8
R14_A	20.5	20.9	22.0	25.3	28.6	29.5	29.4	29.2	29.0	28.9	28.7	28.4	28.2
R15_A	20.2	20.6	21.7	25.0	28.3	29.1	29.1	28.9	28.7	28.5	28.3	28.1	27.9
R16_A	22.3	22.7	23.9	27.2	30.4	31.3	31.2	31.1	30.9	30.8	30.6	30.4	30.2
R17_A	19.4	19.7	20.8	24.1	27.3	28.2	28.1	27.9	27.7	27.6	27.3	27.1	26.9
R18_A	19.7	20.1	21.2	24.5	27.7	28.6	28.5	28.3	28.1	28.0	27.7	27.5	27.3
R19_A	19.1	19.5	20.6	23.8	27.0	27.9	27.8	27.6	27.4	27.3	27.0	26.8	26.6
R20_A	20.6	21.0	22.2	25.6	28.8	29.7	29.6	29.5	29.2	29.1	28.9	28.6	28.4
R21_A	22.0	22.4	23.6	27.0	30.3	31.3	31.2	31.0	30.8	30.7	30.5	30.3	30.1
R22_A	22.7	23.1	24.4	27.9	31.3	32.2	32.1	31.9	31.7	31.6	31.4	31.2	31.0
R23_A	23.4	23.8	25.1	28.7	32.1	33.0	32.9	32.7	32.5	32.4	32.2	32.0	31.8
R24_A	23.0	23.4	24.6	28.1	31.4	32.3	32.3	32.1	31.9	31.8	31.6	31.4	31.3
R25_A	28.2	28.6	30.0	33.7	37.1	38.0	38.0	37.8	37.7	37.7	37.5	37.3	37.2
R26_A	22.7	23.1	24.3	27.6	30.9	31.8	31.7	31.6	31.4	31.3	31.1	30.9	30.7
R27_A	23.3	23.7	25.0	28.5	31.9	32.8	32.7	32.6	32.3	32.2	32.0	31.8	31.6
R28_A	23.3	23.7	24.8	28.1	31.3	32.2	32.2	32.0	31.8	31.7	31.5	31.3	31.1
R29_A	19.1	19.5	20.6	23.8	27.0	27.9	27.8	27.6	27.4	27.2	27.0	26.7	26.5
R30_A	22.6	23.0	24.3	27.8	31.2	32.1	32.0	31.8	31.6	31.5	31.3	31.1	30.9
R31_A	22.3	22.7	24.0	27.5	30.9	31.8	31.7	31.6	31.3	31.2	31.0	30.8	30.6
R32_A	21.9	22.3	23.6	27.1	30.4	31.4	31.3	31.1	30.9	30.7	30.5	30.3	30.1
R33_A	21.9	22.3	23.6	27.1	30.4	31.3	31.2	31.1	30.8	30.7	30.5	30.3	30.1
R34_A	21.7	22.1	23.4	26.9	30.3	31.2	31.1	30.9	30.7	30.5	30.3	30.1	29.9
R35_A	22.4	22.7	23.8	27.1	30.3	31.2	31.1	31.0	30.8	30.7	30.5	30.2	30.0

Receptor						Wind	speed	m/s					
ID	2	3	4	5	6	7	8	9	10	11	12	13	14
R36_A	22.4	22.8	23.9	27.1	30.4	31.3	31.2	31.0	30.8	30.7	30.5	30.3	30.1
R37_A	21.1	21.4	22.5	25.7	28.9	29.8	29.8	29.6	29.4	29.2	29.0	28.8	28.5
R38_A	22.2	22.6	23.7	27.0	30.3	31.2	31.1	31.0	30.7	30.6	30.4	30.2	30.0
R39_A	22.8	23.1	24.3	27.6	30.8	31.8	31.7	31.5	31.3	31.2	31.0	30.8	30.7
R40_A	29.9	30.2	31.6	35.3	38.8	39.7	39.7	39.6	39.4	39.4	39.3	39.2	39.1
R41_A	29.1	29.4	30.8	34.5	38.0	38.9	38.8	38.7	38.6	38.5	38.4	38.3	38.2
R42_A	27.6	28.0	29.4	33.1	36.5	37.4	37.4	37.3	37.1	37.0	36.9	36.8	36.6
R43_A	23.6	24.0	25.2	28.7	32.0	32.9	32.8	32.7	32.5	32.4	32.2	32.0	31.8
R44_A	24.7	25.1	26.4	30.0	33.4	34.3	34.2	34.1	33.9	33.8	33.6	33.4	33.2
R45_A	22.5	22.9	24.2	27.7	31.1	32.0	31.9	31.8	31.6	31.4	31.2	31.0	30.8
R46_A	21.8	22.2	23.4	26.9	30.2	31.1	31.1	30.9	30.6	30.5	30.3	30.1	29.9
R47_A	24.2	24.5	25.7	29.0	32.4	33.2	33.2	33.0	32.8	32.7	32.5	32.3	32.2
R48_A	21.1	21.5	22.6	25.7	29.0	29.8	29.8	29.6	29.4	29.3	29.0	28.8	28.6
R49_A	23.3	23.6	24.8	28.0	31.3	32.2	32.1	32.0	31.8	31.7	31.5	31.3	31.1
R50_A	25.2	25.5	26.7	30.0	33.3	34.2	34.2	34.0	33.8	33.7	33.5	33.4	33.2
R51_A	24.8	25.2	26.3	29.5	32.8	33.6	33.6	33.4	33.2	33.1	33.0	32.8	32.6
R52_A	24.4	24.7	25.9	29.2	32.5	33.4	33.3	33.2	33.0	32.8	32.6	32.5	32.3
R53_A	24.5	24.8	26.0	29.2	32.4	33.3	33.2	33.1	32.9	32.8	32.6	32.4	32.2
R54_A	22.4	22.7	23.8	27.0	30.3	31.2	31.1	31.0	30.8	30.6	30.4	30.2	30.0
R55_A	21.3	21.7	22.8	26.0	29.2	30.1	30.0	29.9	29.7	29.5	29.3	29.1	28.9
R56_A	22.1	22.5	23.6	27.0	30.3	31.2	31.1	30.9	30.7	30.6	30.4	30.2	30.0
R57_A	20.8	21.2	22.3	25.6	28.9	29.8	29.7	29.5	29.3	29.2	29.0	28.7	28.5
R58_A	20.8	21.2	22.3	25.7	28.9	29.8	29.7	29.5	29.3	29.2	29.0	28.8	28.5
R59_A	22.0	22.5	23.9	27.5	30.9	31.8	31.7	31.5	31.3	31.1	30.9	30.7	30.5
R60_A	23.7	24.1	25.5	29.2	32.6	33.5	33.5	33.3	33.1	32.9	32.7	32.5	32.3
R61_A	22.5	22.9	24.3	27.9	31.3	32.2	32.1	32.0	31.7	31.6	31.3	31.1	30.9
R62_A	23.1	23.6	24.9	28.5	31.8	32.8	32.7	32.5	32.3	32.2	32.0	31.8	31.6
R63_A	22.7	23.1	24.3	27.6	30.9	31.7	31.7	31.5	31.3	31.2	31.0	30.8	30.7
R64_A	25.4	25.8	27.0	30.6	33.9	34.8	34.8	34.6	34.5	34.4	34.2	34.1	33.9
R65_A	19.3	19.7	20.9	24.2	27.5	28.3	28.3	28.1	27.8	27.7	27.4	27.2	27.0
R66_A	19.7	20.1	21.2	24.4	27.7	28.5	28.4	28.3	28.0	27.9	27.7	27.4	27.2
R67_A	24.0	24.4	25.6	29.0	32.3	33.2	33.2	33.0	32.9	32.8	32.6	32.4	32.2
R68_A	24.9	25.2	26.5	30.0	33.3	34.2	34.1	34.0	33.8	33.8	33.6	33.4	33.3
R69_A	24.1	24.4	25.6	29.1	32.4	33.3	33.2	33.1	32.9	32.8	32.6	32.5	32.3
R70_A	19.2	19.6	20.8	24.1	27.4	28.3	28.2	28.0	27.8	27.7	27.4	27.1	26.9
R71_A	19.3	19.7	20.8	24.0	27.2	28.1	28.0	27.8	27.6	27.4	27.2	27.0	26.7
R72_A	19.2	19.5	20.6	23.8	27.1	27.9	27.9	27.7	27.4	27.3	27.1	26.8	26.6

Receptor						Wind	lspeed	m/s					
ID	2	3	4	5	6	7	8	9	10	11	12	13	14
R73_A	20.2	20.6	21.8	25.0	28.3	29.1	29.1	28.9	28.7	28.5	28.3	28.1	27.9
R74_A	19.8	20.2	21.3	24.5	27.8	28.7	28.6	28.4	28.2	28.0	27.8	27.6	27.4
R75_A	19.7	20.1	21.2	24.4	27.7	28.6	28.5	28.3	28.1	27.9	27.7	27.5	27.3
R76_A	18.7	19.0	20.1	23.3	26.5	27.4	27.3	27.1	26.9	26.7	26.5	26.2	26.0
R77_A	18.8	19.1	20.2	23.4	26.6	27.5	27.4	27.2	27.0	26.8	26.6	26.3	26.1
R78_A	21.9	22.3	23.5	26.9	30.2	31.1	31.0	30.9	30.7	30.5	30.3	30.1	30.0
R79_A	22.1	22.5	23.7	27.0	30.3	31.2	31.2	31.0	30.8	30.7	30.5	30.3	30.1
R80_A	19.3	19.7	20.9	24.2	27.5	28.4	28.3	28.1	27.9	27.7	27.5	27.2	27.0
R81_A	20.6	21.0	22.1	25.5	28.8	29.6	29.6	29.4	29.2	29.0	28.8	28.6	28.4
R82_A	26.8	27.3	28.8	32.7	36.2	37.2	37.1	37.0	36.9	36.8	36.7	36.5	36.4
R83_A	22.2	22.7	24.3	28.3	31.9	32.8	32.7	32.6	32.4	32.3	32.1	31.9	31.7
R87_A	18.9	19.4	20.7	24.2	27.6	28.5	28.5	28.3	28.1	28.0	27.7	27.4	27.2
R88_A	17.3	17.9	19.5	23.4	27.0	27.9	27.8	27.6	27.3	27.2	26.9	26.6	26.3
R89_A	22.3	22.9	24.5	28.4	32.0	32.9	32.9	32.7	32.5	32.4	32.2	32.0	31.8
R94_A	22.8	23.0	23.9	27.0	29.8	31.0	31.2	31.3	31.2	31.2	31.1	30.9	30.7
R95_A	22.6	22.9	23.9	27.0	30.0	31.1	31.2	31.3	31.2	31.2	31.0	30.9	30.7
R96_A	23.8	24.1	25.1	28.2	31.1	32.3	32.4	32.5	32.4	32.5	32.3	32.1	32.0
R97_A	23.6	24.1	25.6	29.5	33.0	33.9	33.9	33.7	33.5	33.5	33.3	33.1	32.9
R98_A	19.6	20.0	21.1	24.5	27.8	28.7	28.7	28.6	28.4	28.3	28.1	27.8	27.6
R99_A	19.6	20.0	21.1	24.5	27.8	28.7	28.7	28.6	28.4	28.3	28.1	27.8	27.6
R100_A	19.5	20.0	21.1	24.5	27.9	28.8	28.8	28.7	28.5	28.3	28.1	27.9	27.6
R101_A	19.5	20.0	21.1	24.6	27.9	28.8	28.8	28.7	28.5	28.4	28.2	27.9	27.7
R102_A	19.5	20.0	21.2	24.6	27.9	28.8	28.8	28.7	28.5	28.4	28.2	27.9	27.7
R103_A	19.6	20.0	21.2	24.6	27.9	28.9	28.9	28.8	28.6	28.4	28.2	28.0	27.7
R104_A	19.4	19.9	21.1	24.5	27.8	28.7	28.7	28.6	28.4	28.3	28.1	27.8	27.6
R105_A	19.4	19.9	21.1	24.5	27.8	28.7	28.7	28.6	28.4	28.3	28.1	27.8	27.6
R106_A	19.7	20.2	21.7	25.5	28.9	29.9	29.8	29.6	29.4	29.3	29.1	28.8	28.6
R107_A	18.5	19.1	20.6	24.4	27.9	28.8	28.7	28.5	28.3	28.1	27.9	27.6	27.4
R108_A	24.4	24.9	26.5	30.4	33.9	34.9	34.8	34.7	34.5	34.4	34.3	34.1	33.9
R109_A	27.3	27.8	29.3	33.3	36.9	37.8	37.8	37.6	37.5	37.4	37.3	37.2	37.0
R110_A	25.4	25.9	27.4	31.4	35.0	35.9	35.9	35.8	35.6	35.5	35.3	35.2	35.1
R111_A	25.5	25.9	27.5	31.4	34.9	35.9	35.8	35.7	35.5	35.5	35.3	35.1	35.0
R112_A	25.7	26.1	27.6	31.5	35.0	36.0	36.0	35.8	35.7	35.6	35.5	35.3	35.1
R113_A	23.2	23.6	24.9	28.4	31.7	32.7	32.8	32.7	32.6	32.5	32.3	32.1	31.9
R114_A	23.1	23.3	24.0	26.7	29.6	30.5	30.8	31.0	31.0	31.1	30.9	30.8	30.6
R116_A	21.5	22.0	23.6	27.6	31.2	32.1	32.0	31.9	31.7	31.5	31.3	31.1	31.0
R117_A	21.1	21.7	23.3	27.3	30.8	31.7	31.7	31.5	31.3	31.2	31.0	30.8	30.6

Receptor						Wind	lspeed	m/s					
ID	2	3	4	5	6	7	8	9	10	11	12	13	14
R118_A	24.4	24.5	25.0	27.1	31.8	30.7	31.1	31.5	31.7	31.8	31.7	31.6	31.5
R119_A	19.1	19.7	21.2	25.0	28.5	29.4	29.3	29.1	28.9	28.7	28.5	28.3	28.0
R120_A	19.2	19.7	21.2	25.0	28.5	29.4	29.4	29.2	28.9	28.8	28.6	28.3	28.1
R121_A	19.6	20.0	21.2	24.6	27.9	28.8	28.9	28.8	28.6	28.4	28.2	28.0	27.7
R122_A	19.6	20.1	21.2	24.6	27.9	28.8	28.8	28.8	28.6	28.4	28.2	28.0	27.7
R123_A	19.6	20.0	21.2	24.6	27.9	28.8	28.8	28.7	28.6	28.4	28.2	27.9	27.7
R124_A	19.6	20.1	21.2	24.6	27.9	28.8	28.8	28.7	28.6	28.4	28.2	28.0	27.7
R125_A	22.3	22.8	24.4	28.4	31.9	32.9	32.8	32.6	32.4	32.4	32.1	31.9	31.7
R126_A	22.9	23.4	24.9	28.9	32.4	33.4	33.3	33.2	32.9	32.9	32.7	32.5	32.3
R127_A	22.1	22.6	24.2	28.2	31.7	32.6	32.6	32.4	32.2	32.1	31.9	31.7	31.5
R128_A	23.1	23.6	25.2	29.2	32.7	33.6	33.6	33.4	33.2	33.1	33.0	32.8	32.6
R129_A	24.5	24.9	26.3	30.0	33.4	34.3	34.4	34.3	34.1	34.1	33.9	33.7	33.5
R130_A	23.7	24.0	25.0	28.2	31.2	32.3	32.4	32.5	32.4	32.4	32.2	32.1	31.9
R131_A	23.3	23.7	24.9	28.4	31.6	32.6	32.7	32.6	32.5	32.5	32.3	32.1	31.9
R132_A	23.6	24.1	25.6	29.4	32.9	33.8	33.8	33.7	33.5	33.4	33.2	33.0	32.9
R133_A	23.6	24.1	25.5	29.4	32.9	33.8	33.8	33.6	33.5	33.4	33.2	33.0	32.8
R134_A	25.0	25.5	27.1	31.0	34.5	35.4	35.4	35.3	35.1	35.0	34.8	34.7	34.5
R135_A	25.9	26.3	27.8	31.7	35.2	36.2	36.2	36.0	35.9	35.8	35.6	35.5	35.3
R136_A	24.7	25.1	26.7	30.7	34.3	35.2	35.1	35.0	34.8	34.7	34.6	34.4	34.3
R137_A	21.7	22.2	23.6	27.5	31.0	32.0	31.9	31.7	31.5	31.4	31.2	31.0	30.8
R138_A	17.8	18.3	19.8	23.6	27.1	28.0	27.9	27.7	27.5	27.3	27.0	26.8	26.5
R139_A	18.9	19.5	21.0	24.8	28.3	29.3	29.2	29.0	28.7	28.6	28.3	28.0	27.8
R142_A	22.0	22.6	24.1	28.1	31.7	32.6	32.6	32.4	32.2	32.1	31.9	31.7	31.5
R145_A	23.2	23.4	24.1	26.7	29.6	30.5	30.8	31.0	31.1	31.1	31.0	30.8	30.7
R146_A	19.7	20.1	21.2	24.6	27.9	28.8	28.8	28.7	28.5	28.4	28.2	28.0	27.7
R147_A	19.7	20.1	21.2	24.6	27.9	28.8	28.8	28.7	28.5	28.4	28.2	28.0	27.7
R148_A	19.0	19.4	20.7	24.2	27.5	28.4	28.4	28.3	28.0	27.9	27.6	27.4	27.1
R149_A	24.5	24.7	25.3	27.7	29.7	31.3	31.7	32.0	32.1	32.3	32.1	32.0	31.9
R150_A	22.8	23.3	24.6	28.3	31.7	32.7	32.7	32.6	32.4	32.3	32.1	31.9	31.8
R151_A	19.3	19.8	21.3	25.0	28.5	29.4	29.3	29.2	28.9	28.8	28.5	28.3	28.1
R152_A	21.1	21.5	22.6	25.9	29.0	30.1	30.1	30.1	30.0	29.9	29.7	29.5	29.3
R153_A	19.4	19.9	21.3	25.1	28.5	29.4	29.4	29.3	29.0	28.9	28.7	28.4	28.2
R157_A	30.3	30.3	30.4	31.8	31.9	34.6	35.5	36.4	36.8	37.1	37.1	37.0	37.0
R158_A	39.4	39.4	39.4	40.5	34.4	42.9	44.1	45.2	45.7	46.1	46.1	46.1	46.0
R159_A	22.6	23.1	24.7	28.7	32.2	33.2	33.1	32.9	32.7	32.6	32.5	32.3	32.1
R160_A	21.2	21.7	23.3	27.3	30.8	31.8	31.7	31.5	31.3	31.2	31.0	30.8	30.6
R161_A	20.7	21.2	22.8	26.8	30.4	31.3	31.2	31.0	30.8	30.7	30.4	30.2	30.0

Receptor						Wind	lspeed	m/s					
ID	2	3	4	5	6	7	8	9	10	11	12	13	14
R162_A	22.9	23.2	23.9	26.5	29.5	30.4	30.6	30.8	30.8	30.9	30.7	30.6	30.4
R163_A	17.9	18.5	19.8	23.6	27.0	28.0	27.9	27.7	27.5	27.3	27.1	26.8	26.5
R164_A	23.3	23.8	25.4	29.4	32.9	33.9	33.8	33.7	33.5	33.4	33.2	33.0	32.8
R165_A	28.5	28.9	30.5	34.5	38.1	39.0	39.0	38.9	38.7	38.7	38.5	38.4	38.3
R166_A	29.4	29.8	31.4	35.5	39.0	40.0	39.9	39.8	39.7	39.6	39.5	39.4	39.2
R167_A	19.7	20.2	21.6	25.4	28.8	29.8	29.7	29.6	29.3	29.2	29.0	28.7	28.5
R173_A	19.3	19.8	21.1	24.8	28.2	29.2	29.1	29.0	28.7	28.6	28.3	28.0	27.8
R174_A	22.4	22.8	23.8	27.1	30.2	31.2	31.3	31.3	31.3	31.2	31.1	30.9	30.7
R175_A	22.3	22.9	24.4	28.4	32.0	32.9	32.8	32.7	32.5	32.4	32.2	32.0	31.8
R176_A	22.8	23.3	24.9	28.9	32.4	33.4	33.3	33.1	32.9	32.9	32.7	32.5	32.3
R177_A	23.1	23.6	25.2	29.2	32.7	33.7	33.6	33.5	33.3	33.2	33.0	32.8	32.6
R178_A	18.8	19.3	20.8	24.6	28.1	29.0	29.0	28.8	28.6	28.4	28.2	27.9	27.7
R179_A	20.5	21.1	22.6	26.5	30.0	30.9	30.9	30.7	30.5	30.3	30.1	29.9	29.7
R180_A	19.9	20.4	21.9	25.8	29.3	30.2	30.1	30.0	29.8	29.6	29.4	29.1	28.9
R181_A	27.5	28.0	29.6	33.5	37.1	38.0	38.0	37.9	37.7	37.6	37.5	37.3	37.2
R182_A	23.4	23.9	25.5	29.5	33.1	34.0	33.9	33.8	33.6	33.5	33.3	33.1	33.0
R183_A	27.0	27.4	29.0	33.0	36.6	37.5	37.4	37.3	37.2	37.1	36.9	36.8	36.6
R184_A	25.8	26.2	27.8	31.8	35.3	36.3	36.2	36.1	36.0	35.9	35.7	35.6	35.4
R185_A	25.6	26.1	27.6	31.7	35.2	36.1	36.1	36.0	35.8	35.7	35.6	35.4	35.2
R186_A	26.8	27.2	28.8	32.8	36.4	37.3	37.3	37.1	37.0	37.0	36.7	36.6	36.5
R187_A	20.6	21.1	22.5	26.4	29.9	30.9	30.8	30.6	30.4	30.3	30.1	29.9	29.6
R201_A	27.1	27.6	29.1	33.1	36.6	37.5	37.5	37.4	37.2	37.2	37.0	36.9	36.8
R202_A	27.7	28.1	29.7	33.6	37.2	38.1	38.1	37.9	37.8	37.7	37.6	37.4	37.3
R203_A	27.2	27.6	29.2	33.1	36.6	37.6	37.5	37.4	37.3	37.2	37.0	36.9	36.7
R204_A	26.3	26.7	28.2	32.1	35.7	36.6	36.6	36.4	36.3	36.2	36.1	35.9	35.8
R205_A	24.9	25.3	26.7	30.5	33.9	34.9	34.9	34.8	34.6	34.6	34.4	34.2	34.1
R206_A	24.1	24.5	25.8	29.4	32.7	33.7	33.7	33.7	33.5	33.5	33.3	33.1	33.0
R207_A	22.8	23.1	24.0	27.1	30.1	31.2	31.4	31.4	31.4	31.4	31.2	31.0	30.9
R208_A	22.9	23.2	24.2	27.4	30.3	31.5	31.6	31.6	31.6	31.6	31.4	31.2	31.1
R209_A	23.4	23.8	24.8	28.1	31.2	32.3	32.3	32.4	32.3	32.3	32.1	31.9	31.8
R210_A	22.8	23.3	24.6	28.3	31.8	32.7	32.7	32.6	32.4	32.4	32.1	32.0	31.8
R211_A	23.0	23.5	24.9	28.6	32.0	33.0	33.0	32.9	32.7	32.6	32.4	32.2	32.0
R212_A	24.2	24.7	26.2	30.1	33.6	34.6	34.5	34.4	34.2	34.1	33.9	33.8	33.6
R213_A	23.8	24.3	25.8	29.7	33.2	34.1	34.1	33.9	33.8	33.7	33.5	33.3	33.2
R214_A	23.0	23.5	25.0	28.9	32.5	33.4	33.3	33.2	33.0	32.9	32.7	32.5	32.3
R215_A	22.9	23.5	25.0	28.9	32.4	33.3	33.3	33.1	32.9	32.9	32.6	32.5	32.3
R216_A	20.4	20.9	22.4	26.2	29.7	30.6	30.6	30.4	30.2	30.1	29.9	29.6	29.4

Receptor						Wind	lspeed	m/s					
ID	2	3	4	5	6	7	8	9	10	11	12	13	14
R217_A	20.3	20.8	22.3	26.1	29.6	30.6	30.5	30.4	30.1	30.0	29.8	29.5	29.3
R222_A	17.4	18.0	19.5	23.5	27.0	28.0	27.9	27.6	27.4	27.2	26.9	26.6	26.4
R223_A	16.9	17.5	19.0	22.9	26.4	27.3	27.3	27.0	26.8	26.6	26.3	26.1	25.8
R224_A	18.2	18.8	20.4	24.4	27.9	28.8	28.7	28.5	28.3	28.1	27.9	27.6	27.4
R225_A	28.5	28.9	30.5	34.6	38.1	39.1	39.0	38.9	38.7	38.7	38.6	38.4	38.3
R226_A	22.5	23.0	24.6	28.5	32.1	33.0	33.0	32.8	32.7	32.5	32.3	32.1	32.0
R227_A	25.7	26.1	27.7	31.7	35.3	36.2	36.2	36.0	35.9	35.8	35.6	35.5	35.4
R228_A	26.9	27.4	29.0	32.9	36.5	37.4	37.4	37.3	37.1	37.0	36.9	36.7	36.6
R229_A	27.5	28.0	29.6	33.5	37.0	38.0	37.9	37.8	37.7	37.6	37.5	37.3	37.2
R230_A	26.0	26.5	28.0	31.8	35.3	36.3	36.3	36.1	36.0	35.9	35.7	35.6	35.4
R231_A	22.5	22.8	23.9	27.1	30.1	31.2	31.3	31.4	31.3	31.3	31.1	30.9	30.7
R232_A	24.4	24.8	26.3	30.1	33.6	34.6	34.5	34.4	34.2	34.1	34.0	33.8	33.6
R233_A	24.2	24.7	26.2	30.1	33.6	34.6	34.5	34.4	34.2	34.2	34.0	33.8	33.6
R234_A	20.7	21.2	22.7	26.6	30.2	31.1	31.0	30.9	30.6	30.5	30.3	30.0	29.8
R235_A	31.1	31.6	33.2	37.2	40.8	41.7	41.7	41.5	41.4	41.4	41.3	41.2	41.0
R236_A	31.2	31.6	33.2	37.2	40.8	41.7	41.7	41.6	41.5	41.4	41.3	41.2	41.1
R237_A	28.2	28.7	30.3	34.3	37.9	38.8	38.8	38.6	38.5	38.4	38.3	38.2	38.1
R238_A	25.2	25.7	27.3	31.3	34.9	35.8	35.8	35.6	35.4	35.4	35.2	35.0	34.9
R239_A	22.5	23.0	24.6	28.5	32.1	33.0	33.0	32.8	32.6	32.5	32.3	32.1	32.0
R240_A	22.6	23.2	24.7	28.7	32.3	33.2	33.2	33.0	32.8	32.7	32.5	32.3	32.1
R241_A	23.9	24.4	26.0	30.0	33.5	34.5	34.4	34.3	34.1	34.0	33.8	33.6	33.5
R242_A	24.4	24.9	26.4	30.4	34.0	34.9	34.9	34.7	34.5	34.5	34.3	34.1	34.0
R243_A	24.5	24.9	26.5	30.4	33.9	34.9	34.8	34.7	34.5	34.4	34.2	34.1	33.9
R244_A	24.4	24.9	26.5	30.4	33.9	34.9	34.8	34.7	34.5	34.4	34.2	34.1	33.9
R245_A	28.5	29.0	30.6	34.6	38.1	39.1	39.0	38.9	38.8	38.7	38.6	38.5	38.4
R246_A	27.6	28.1	29.6	33.5	37.1	38.0	38.0	37.9	37.7	37.7	37.5	37.4	37.3
R247_A	27.8	28.3	29.8	33.8	37.3	38.2	38.2	38.1	37.9	37.9	37.7	37.6	37.5
R248_A	25.4	25.9	27.4	31.3	34.9	35.8	35.8	35.6	35.5	35.4	35.2	35.0	34.9
R249_A	36.1	36.5	38.1	42.2	45.7	46.7	46.6	46.6	46.5	46.5	46.4	46.3	46.2
R250_A	22.1	22.7	24.3	28.3	31.8	32.7	32.7	32.5	32.3	32.2	32.0	31.8	31.6
R251_A	20.7	21.3	22.9	26.8	30.4	31.3	31.2	31.1	30.8	30.7	30.5	30.3	30.1
R252_A	19.9	20.3	21.4	24.8	28.1	29.0	29.0	28.9	28.8	28.6	28.4	28.2	28.0
R253_A	19.4	19.9	21.0	24.4	27.7	28.6	28.6	28.5	28.4	28.2	28.0	27.7	27.5
R254_A	19.4	19.8	21.0	24.4	27.7	28.6	28.6	28.5	28.3	28.2	27.9	27.7	27.5
R255_A	19.8	20.3	21.4	24.7	28.0	28.9	29.0	28.9	28.7	28.6	28.4	28.1	27.9
R256_A	19.8	20.2	21.4	24.8	28.2	29.1	29.1	28.9	28.8	28.6	28.4	28.1	27.9
R257_A	19.4	19.8	21.0	24.5	27.8	28.7	28.7	28.6	28.4	28.3	28.0	27.8	27.5

Receptor						Wind	speed	m/s					
ID	2	3	4	5	6	7	8	9	10	11	12	13	14
R258_A	19.4	19.8	21.0	24.5	27.8	28.7	28.7	28.6	28.4	28.2	28.0	27.8	27.5
R259_A	19.3	19.8	21.0	24.4	27.8	28.7	28.7	28.6	28.3	28.2	28.0	27.7	27.5
R260_A	19.3	19.8	21.0	24.4	27.8	28.7	28.7	28.5	28.3	28.2	28.0	27.7	27.5
R261_A	19.3	19.7	20.9	24.4	27.7	28.7	28.6	28.5	28.3	28.2	27.9	27.7	27.4
R262_A	19.3	19.7	20.9	24.4	27.7	28.7	28.6	28.5	28.3	28.2	27.9	27.7	27.4
R263_A	19.2	19.6	20.8	24.3	27.6	28.5	28.5	28.4	28.2	28.1	27.8	27.6	27.3
R264_A	19.2	19.6	20.8	24.3	27.6	28.5	28.5	28.4	28.2	28.1	27.8	27.6	27.3
R265_A	19.0	19.5	20.7	24.2	27.5	28.5	28.4	28.3	28.1	27.9	27.7	27.4	27.2
R266_A	19.0	19.5	20.7	24.2	27.6	28.5	28.5	28.4	28.1	28.0	27.7	27.5	27.2
R267_A	18.9	19.4	20.6	24.1	27.5	28.4	28.3	28.2	28.0	27.9	27.6	27.3	27.1
R268_A	18.9	19.4	20.6	24.2	27.6	28.5	28.5	28.3	28.1	27.9	27.7	27.4	27.2
R269_A	19.2	19.7	21.1	24.8	28.2	29.1	29.0	28.9	28.6	28.4	28.2	27.9	27.7
R270_A	18.6	19.1	20.4	24.0	27.4	28.3	28.3	28.1	27.9	27.7	27.5	27.2	26.9
R271_A	18.9	19.4	21.0	24.8	28.3	29.3	29.2	29.0	28.7	28.6	28.3	28.0	27.8
R272_A	19.0	19.6	21.0	24.8	28.3	29.3	29.2	29.0	28.8	28.6	28.4	28.1	27.9
R273_A	19.1	19.7	21.2	25.0	28.5	29.4	29.4	29.2	28.9	28.8	28.6	28.3	28.1
R274_A	19.5	20.1	21.4	25.1	28.5	29.5	29.4	29.3	29.1	28.9	28.7	28.5	28.2
R275_A	19.6	20.0	21.4	25.1	28.5	29.4	29.4	29.2	29.0	28.9	28.7	28.4	28.2
R276_A	18.8	19.3	20.6	24.2	27.7	28.6	28.5	28.3	28.1	27.9	27.7	27.4	27.2
R277_A	20.8	21.2	22.1	25.0	28.3	29.1	29.2	29.2	29.1	29.0	28.8	28.6	28.4
R278_A	23.6	23.8	24.4	26.9	29.8	30.7	31.0	31.3	31.3	31.4	31.3	31.1	31.0
R279_A	23.8	24.0	24.6	27.1	29.9	30.8	31.1	31.4	31.5	31.6	31.4	31.3	31.2
R280_A	24.5	24.6	25.1	27.4	30.2	31.0	31.4	31.8	31.9	32.1	31.9	31.8	31.7
R281_A	26.4	26.5	26.8	28.7	31.2	32.0	32.6	33.2	33.4	33.7	33.6	33.5	33.4
R282_A	23.7	23.9	24.4	26.6	31.0	30.2	30.6	31.0	31.1	31.2	31.1	30.9	30.8
R283_A	19.5	19.9	21.1	24.4	27.8	28.7	28.7	28.6	28.4	28.3	28.0	27.8	27.5
R284_A	19.4	19.8	21.0	24.5	27.8	28.7	28.7	28.6	28.4	28.3	28.0	27.8	27.5
R285_A	19.3	19.8	21.0	24.4	27.8	28.7	28.7	28.5	28.3	28.2	28.0	27.7	27.5
R286_A	19.0	19.5	20.7	24.2	27.6	28.5	28.4	28.3	28.1	27.9	27.7	27.4	27.2
R287_A	19.4	19.8	21.0	24.5	27.9	28.8	28.7	28.6	28.4	28.3	28.0	27.7	27.5
R288_A	20.6	20.9	21.9	25.1	28.3	29.1	29.2	29.2	29.1	29.0	28.8	28.6	28.4
R289_A	20.4	20.7	21.8	25.0	28.3	29.2	29.2	29.2	29.0	29.0	28.7	28.5	28.3
R290_A	20.4	20.7	21.8	25.0	28.3	29.2	29.2	29.2	29.0	29.0	28.7	28.5	28.3
R291_A	20.6	20.9	21.9	25.1	28.3	29.2	29.3	29.3	29.1	29.1	28.9	28.7	28.4
R292_A	22.3	22.5	23.3	26.1	29.2	30.1	30.3	30.4	30.4	30.4	30.2	30.0	29.9
R293_A	22.6	22.8	23.6	26.3	29.3	30.2	30.4	30.6	30.6	30.6	30.5	30.3	30.1
R294_A	23.0	23.3	23.9	26.5	29.5	30.3	30.6	30.8	30.9	30.9	30.8	30.6	30.5

Receptor						Wind	speed	m/s					
ID	2	3	4	5	6	7	8	9	10	11	12	13	14
R295_A	25.5	25.6	26.0	28.1	30.6	31.5	32.0	32.5	32.7	32.8	32.7	32.7	32.6
R296_A	19.8	20.3	21.6	25.2	28.6	29.6	29.5	29.4	29.1	29.0	28.7	28.5	28.2
R297_A	19.3	19.9	21.4	25.2	28.7	29.7	29.6	29.4	29.2	29.0	28.7	28.5	28.2
R298_A	18.7	19.2	20.5	24.2	27.6	28.5	28.5	28.3	28.1	27.9	27.6	27.4	27.1
R299_A	24.3	24.5	25.0	27.5	29.7	31.2	31.5	31.8	31.9	32.0	31.9	31.8	31.6
R300_A	25.2	25.3	25.8	28.0	29.6	31.5	31.9	32.4	32.5	32.7	32.6	32.5	32.4
R301_A	25.4	25.6	26.0	28.3	29.9	31.8	32.3	32.7	32.8	33.0	32.9	32.8	32.7
R302_A	26.2	26.4	26.8	28.9	30.2	32.3	32.8	33.3	33.5	33.7	33.6	33.5	33.4
R303_A	27.9	28.0	28.3	30.1	30.5	33.3	34.0	34.6	34.9	35.1	35.0	35.0	34.9
R304_A	25.6	25.7	26.3	28.6	30.5	32.3	32.7	33.0	33.2	33.3	33.2	33.1	33.0
R305_A	22.6	23.0	24.2	27.6	30.8	31.9	31.9	31.9	31.8	31.7	31.5	31.3	31.2
R306_A	22.8	23.1	24.3	27.7	30.8	31.9	32.0	31.9	31.8	31.8	31.6	31.4	31.2
R307_A	25.3	25.5	26.1	28.5	30.6	32.2	32.6	32.9	33.0	33.1	33.0	32.9	32.8
R308_A	23.2	23.5	24.3	27.3	30.0	31.3	31.4	31.6	31.6	31.6	31.4	31.3	31.1
R309_A	23.7	24.0	24.7	27.4	29.8	31.2	31.5	31.7	31.7	31.8	31.7	31.5	31.4
R310_A	27.5	27.6	27.9	29.8	30.6	33.1	33.7	34.3	34.6	34.8	34.7	34.7	34.6
R311_A	22.8	23.2	24.3	27.6	30.8	31.9	31.9	31.9	31.8	31.8	31.6	31.4	31.2
R312_A	19.1	19.6	21.1	24.9	28.5	29.4	29.3	29.1	28.9	28.7	28.5	28.3	28.0
R313_A	18.9	19.5	20.9	24.8	28.3	29.2	29.1	28.9	28.7	28.6	28.3	28.1	27.9
R314_A	19.1	19.6	21.1	24.9	28.4	29.4	29.3	29.1	28.9	28.8	28.5	28.3	28.0
R315_A	18.0	18.5	19.9	23.6	27.0	28.0	27.9	27.7	27.5	27.3	27.1	26.8	26.6
R316_A	17.8	18.4	19.7	23.4	26.9	27.8	27.8	27.6	27.3	27.2	26.9	26.6	26.4
R317_A	18.2	18.7	20.0	23.7	27.1	28.0	28.0	27.8	27.6	27.4	27.2	26.9	26.7
R318_A	22.7	23.2	24.6	28.3	31.7	32.7	32.7	32.5	32.4	32.3	32.1	31.9	31.7
R319_A	22.8	23.2	24.5	28.1	31.4	32.4	32.4	32.4	32.2	32.1	31.9	31.7	31.6
R320_A	22.5	22.9	24.2	27.8	31.2	32.2	32.2	32.1	31.9	31.9	31.7	31.5	31.3
R321_A	24.0	24.5	25.9	29.7	33.2	34.1	34.1	34.0	33.8	33.7	33.6	33.4	33.2
R322_A	23.1	23.6	25.2	29.2	32.8	33.7	33.6	33.5	33.3	33.2	33.0	32.8	32.6
R323_A	19.6	20.1	21.5	25.1	28.6	29.5	29.4	29.3	29.0	28.9	28.6	28.4	28.1
R324_A	26.6	26.8	27.1	29.1	30.2	32.5	33.1	33.6	33.8	34.0	33.9	33.8	33.8
R325_A	18.9	19.4	20.7	24.2	27.6	28.5	28.5	28.3	28.1	28.0	27.7	27.4	27.2
R327_A	23.9	24.3	25.5	28.9	32.1	33.1	33.2	33.2	33.1	33.1	32.9	32.7	32.6
R328_A	23.9	24.3	25.3	28.7	31.7	32.9	32.9	33.0	32.9	32.9	32.7	32.5	32.4
R329_A	20.8	21.4	23.0	27.0	30.5	31.5	31.4	31.2	31.0	30.8	30.6	30.4	30.2
R330_A	19.0	19.5	20.9	24.6	28.0	29.0	28.9	28.8	28.5	28.4	28.1	27.9	27.7
R331_A	24.0	24.4	25.6	29.1	32.3	33.4	33.4	33.4	33.3	33.2	33.0	32.9	32.7
R332_A	23.5	23.7	24.3	26.8	29.8	30.5	30.9	31.1	31.2	31.3	31.2	31.0	30.9

Receptor ID	Windspeed m/s												
	2	3	4	5	6	7	8	9	10	11	12	13	14
R333_A	18.1	18.6	20.2	24.2	27.7	28.6	28.5	28.3	28.1	27.9	27.7	27.4	27.2
R334_A	25.2	25.4	26.0	28.5	30.6	32.2	32.6	32.9	33.0	33.1	33.0	32.8	32.7
R335_A	19.7	20.2	21.6	25.3	28.7	29.6	29.6	29.5	29.2	29.1	28.9	28.7	28.4

CONSULTANTS IN ENGINEERING, ENVIRONMENTAL SCIENCE & PLANNING

www.fehilytimoney.ie

NSAI Certified

